四环素与3,4-苯并芘复合污染对抗性基因tetA(C)产生高抗性突变的影响
作者:
基金项目:

国家自然科学基金(31470551,41571244)


Effect of tetracycline and benzo [a] pyrene combined pollution on the generation of resistance gene tetA(C) mutation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    [目的] 探究环境中同时存在低浓度四环素(tetracycline,TC)和3,4-苯并芘(benzo [a] pyrene,Bap)对抗性基因tetA(C)产生高抗性突变的影响。[方法] 以大肠杆菌(Escherichia coli,E.coli)为宿主菌株,pACYC184质粒作为载体,四环素抗性基因tetA(C)作为研究对象,采用易错PCR构建基因文库的方法,建立基因突变位点对应高抗性的关系密码表。同时设置添加低浓度TC且添加0-30 mg/L Bap以及仅添加0-30 mg/L Bap的处理组,培养携带pACYC184质粒的大肠杆菌14 d,每组中随机挑选10株获得高抗性的菌株,对其中的tetA(C)基因片段进行测序,再结合突变位点密码表,计算高抗性菌株中由基因突变产生高抗性菌株的比例。[结果] 测序结果显示在低浓度TC选择压力下,Bap浓度越高时,高抗性基因突变株占的比例也越高(P ≤ 0.01),而不添加TC时,Bap浓度与高抗性基因突变株占比之间无变化规律(P>0.05)。[结论] 当环境中同时存在Bap和低浓度TC时,高抗性突变基因易于通过选择压力保存下来。

    Abstract:

    [Objective] Here, we explore the effect of the low concentration tetracycline (TC) and Benzo [a] pyrene (Bap) on the generation of high resistance gene tetA(C) mutations in the environment.[Methods] Escherichia coli, pACYC184 plasmid and tetracycline resistance gene tetA(C) was used as the host strain, the vector and the research object, respectively. Error-prone PCR was used to construct the gene library, the code table of high resistance mutation sites was established corresponding to high resistance mutants in the gene library. At the same time, the E. coli carrying pACYC184 were cultivated with 0-10 mg/L TC and 0-30 mg/L Bap 14 d. We randomly selected ten high resistance mutation from each group. The tetA(C) genes in these mutations were then sequenced. Sequencing results were compared with the code table of high resistance mutation sites, calculated the proportion of high resistance mutants caused by tetA(C) gene mutation in all high resistant strains.[Results] Sequencing results showed that under the selection pressure of low concentration TC, while the Bap concentration increases, the frequency of high resistance gene mutant increases (P ≤ 0.01). But without TC, there is no corelation between Bap concentration and the frequency of high resistance gene mutants (P>0.05).[Conclusion] When Bap and low concentration TC both in the environment, the high resistance mutants were easier survived by selection pressure.

    参考文献
    [1] Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin YF, Yannarell AC, Maxwell S, Aminov RI. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Journal of Environmental Quality, 2009, 38(3):1086-1108.
    [2] Qiao M, Chen WD, Su JQ, Zhang B, Zhang C. Fate of tetracyclines in swine manure of three selected swine farms in China. Journal of Environmental Sciences, 2012, 24(6):1047-1052.
    [3] Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 2015, 49(11):6772-6782.
    [4] Li C, Chen JY, Wang JH, Ma ZH, Han P, Luan YX, Lu AX. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment. Science of The Total Environment, 2015, 521-522:101-107.
    [5] Ji XL, Shen QH, Liu F, Ma J, Xu G, Wang YL, Wu MH. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai, China. Journal of Hazardous Materials, 2012, 235-236:178-185.
    [6] Lai XL, Wu PX, Ruan B. Evolution of antibiotic resistance genes in E. coli by tetracycline. Acta Scientiae Circumstantiae, 2019, 39(8):2475-2482. (in Chinese) 赖晓琳, 吴平霄, 阮博. 四环素对大肠杆菌抗生素抗性基因进化的影响. 环境科学学报, 2019, 39(8):2475-2482.
    [7] Tamminen M, Karkman A, Lõhmus A, Muziasari WI, Takasu H, Wada S, Suzuki S, Virta M. Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure. Environmental Science & Technology, 2011, 45(2):386-391.
    [8] Wu N, Qiao M, Zhang B, Cheng WD, Zhu YG. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China. Environmental Science & Technology, 2010, 44(18):6933-6939.
    [9] Luo Y, Zhou QX. Antibiotic resistance genes (ARGs) as emerging pollutants. Acta Scientiae Circumstantiae, 2008, 28(8):1499-1505. (in Chinese) 罗义, 周启星. 抗生素抗性基因(ARGs)——一种新型环境污染物. 环境科学学报, 2008, 28(8):1499-1505.
    [10] Mao DQ, Luo Y, Mathieu J, Wang Q, Feng L, Mu QH, Feng CY, Alvarez PJJ. Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation. Environmental Science & Technology, 2014, 48(1):71-78.
    [11] Stoll C, Sidhu JPS, Tiehm A, Toze S. Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia. Environmental Science & Technology, 2012, 46(17):9716-9726.
    [12] Pruden A, Pei RT, Storteboom H, Carlson KH. Antibiotic resistance genes as emerging contaminants:studies in northern Colorado. Environmental Science & Technology, 2006, 40(23):7445-7450.
    [13] Negreanu Y, Pasternak Z, Jurkevitch E, Cytryn E. Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils. Environmental Science & Technology, 2012, 46(9):4800-4808.
    [14] Han XM, Hu HW, Shi XZ, Wang JT, Han LL, Chen DL, He JZ. Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia. Environmental Pollution, 2016, 211:48-57.
    [15] Gao P, Munir M, Xagoraraki I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Science of the Total Environment, 2012, 421-422:173-183.
    [16] Guay GG, Tuckman M, Rothstein DM. Mutations in the tetA(B) gene that cause a change in substrate-specificity of the tetracycline efflux pump. Antimicrobial Agents And Chemotherapy, 1994, 38(4):857-860.
    [17] Lv L, Jiang T, Zhang SH, Yu X. Exposure to mutagenic disinfection byproducts leads to increase of antibiotic resistance in Pseudomonas aeruginosa. Environmental Science & Technology, 2014, 48(14):8188-8195.
    [18] Sun MM, Ye M, Wu J, Feng YF, Wan JZ, Tian D, Shen FY, Liu K, Hu F, Li HX, Jiang X, Yang LZ, Kengara FO. Positive relationship detected between soil bioaccessible organic pollutants and antibiotic resistance genes at dairy farms in Nanjing, Eastern China. Environmental Pollution, 2015, 206:421-428.
    [19] Sun MM, Ye M, Wu J, Feng YF, Shen FY, Tian D, Liu K, Hu F, Li HX, Jiang X, Yang LZ, Kengara FO. Impact of bioaccessible pyrene on the abundance of antibiotic resistance genes during Sphingobium sp.- and sophorolipid-enhanced bioremediation in soil. Journal of Hazardous Materials, 2015, 300:121-128.
    [20] Wang CX, Li JG, Dong KY. Method for determination of Benzo[a] pyrene in soil. Analytical Chemistry, 1979, 7(3):197-200. (in Chinese) 王崇效, 李俊国, 董克虞. 土壤中3, 4苯并芘的测定方法. 分析化学, 1979, 7(3):197-200.
    [21] Gong YH, Hao L, Guo KK. Determination of 3,4-benzopyrene content in the soil with the solvent extraction and UV absorption method. Journal of Shanxi Agricultural Sciences, 2012, 40(4):383-385. (in Chinese) 弓玉红, 郝林, 郭凯凯. 萃取-紫外分光光度法测定土壤中3, 4-苯并芘含量. 山西农业科学, 2012, 40(4):383-385.
    [22] Fan FY, Yang SX, Cao ZS, Li Y, Liu GL. Benzo[a] pyrene-induced cell transformation and DNA chain breaking. Chinese Journal of Preventive Medicine, 1999, 33(2):87. (in Chinese) 樊飞跃, 杨素霞, 曹珍山, 李煜, 刘国廉. 苯并芘致细胞转化与DNA链断裂. 中华预防医学杂志, 1999, 33(2):87.
    [23] Urios A, Blanco M. Induction of SOS-independent mutations by Benzo[a]pyrene treatment in Escherichia coli cells deficient in MutY or MutM DNA glycosylases:possible role of oxidative lesions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1996, 356(2):229-235.
    [24] Graham DW, Olivares-Rieumont S, Knapp CW, Lima L, Werner D, Bowen E. Antibiotic resistance gene abundances associated with waste discharges to the Almendares River near Havana, Cuba. Environmental Science & Technology, 2011, 45(2):418-424.
    [25] Gorovtsov AV, Sazykin IS, Sazykina MA. The influence of heavy metals, polyaromatic hydrocarbons, and polychlorinated biphenyls pollution on the development of antibiotic resistance in soils. Environmental Science and Pollution Research, 2018, 25(10):9283-9292.
    [26] Xie WY, McGrath SP, Su JQ, Hirsch PR, Clark IM, Shen QR, Zhu YG, Zhao FJ. Long-term impact of field applications of sewage sludge on soil antibiotic resistome. Environmental Science & Technology, 2016, 50(23):12602-12611.
    [27] Bonetta S, Bonetta S, Schilirò T, Ceretti E, Feretti D, Covolo L, Vannini S, Villarini M, Moretti M, Verani M, Carducci A, Bagordo F, De Donno A, Bonizzoni S, Bonetti S, Pignata C, Carraro E, Gelatti U. Mutagenic and genotoxic effects induced by PM0.5 of different Italian towns in human cells and bacteria:the MAPEC_LIFE study. Environmental Pollution, 2019, 245:1124-1135.
    [28] Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, King CJ, McArthur JV. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environmental Microbiology, 2006, 8(9):1510-1514.
    相似文献
    引证文献
引用本文

俞珊珊,李根,黄萌,程思,武俊. 四环素与3,4-苯并芘复合污染对抗性基因tetA(C)产生高抗性突变的影响[J]. 微生物学报, 2020, 60(8): 1605-1615

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-10-09
  • 最后修改日期:2019-12-25
  • 在线发布日期: 2020-08-06
文章二维码