博落回提取物替代抗生素对肉鸡生长性能、盲肠微生物及盲肠紧密连接的影响
作者:
基金项目:

珠海市引进创新创业团队项目(ZH01110405170028PWC)


Effects of Macleaya cordata extracts instead of antibiotics on growth performance, caecum microbes and tight junction gene expression of yellow-feathered broilers
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 本研究旨在探讨博落回提取物(Macleaya cordata extract,MCE)替代促生长抗生素(Antibiotic growth promoters,AGPs)对黄羽肉鸡生长性能、盲肠微生物及紧密连接mRNA表达的影响。[方法] 试验选取体重相近、体型均匀、健康状况良好的1日龄温氏新黄鸡二号公鸡300只,随机分为5组,每组6个重复,每个重复10羽。分别饲喂基础日粮(NC)、抗生素日粮(ANT,基础日粮添加50 mg/kg那西肽和50 mg/kg金霉素)和试验日粮(基础日粮中添加200、400、800 mg/kg MCE),试验期60 d。[结果] 日粮添加400 mg/kg MCE替代AGPs显著降低了料肉比(P<0.05),并显著增加了盲肠长度(P<0.05)。日粮添加MCE显著提高了肉鸡盲肠食糜中Firmicutes细菌数量和Clostridium cluster XIVa数量(P<0.05);MCE替代AGPs显著降低了盲肠Escherichia coli数量(P<0.05)。400 mg/kg和800 mg/kg MCE替代日粮中AGPs显著增加了肉鸡盲肠食糜中总短链脂肪酸、乙酸和丁酸含量(P<0.05);400 mg/kg MCE替代AGPs显著提高了盲肠中支链脂肪酸异丁酸和异戊酸的浓度(P<0.05)。日粮添加MCE显著上调了肉鸡盲肠Claudin-1、JAM2、ZO-1的mRNA表达量(P<0.05),并降低了黏蛋白MUC2、MUC5acMUC13的表达量(P<0.05)。[结论] MCE替代AGPs可通过提高盲肠有益菌数量和短链脂肪酸浓度,促进肠道发育,提升肠道屏障功能等途径,改善黄羽肉鸡生长性能,本研究中其最适添加量为400 mg/kg。

    Abstract:

    [Objective] The aim of this study was to evaluate the effects of Macleaya cordata extracts (MCE) instead of antibiotics on growth performance, caecum microbes, short chain fatty acids (SCFAs) and tight junction mRNA expression in yellow-feathered broilers.[Methods] A total of 300 one-day-old Wenshi new yellow broilers No. 2 with similar body weight were randomly allotted to 5 groups, with 6 replicates and 10 broilers per replicate. Broilers in control group were fed a basal diet (NC) and broilers in antibiotic group (ANT), fed a basal diet with 50 mg/kg Nosiheptide and 50 mg/kg chlortetracycline, while those in the treatment groups were fed a basal diet supplemented with 200, 400 and 800 mg/kg MCE. The experiment was lasted for 60 days.[Results] The addition of 400 mg/kg MCE to replace antibiotic growth promoter in yellow-feathered broilers diet significantly reduced (P<0.05) the feed conversion ratio, and significantly increased (P<0.05) the length of the cecum. Dietary supplementation with MCE significantly increased (P<0.05) the cecal Firmicutes and Clostridium cluster XIVa counts and significantly decreased (P<0.05) the Escherichia coli counts. Supplemented with 400 and 800 mg/kg MCE to replace AGPs significantly increased (P<0.05) the cecal total short-chain fatty acids, acetic acid and butyric acid, and 400 mg/kg MCE significantly increased the branched-chain fatty acids, including isobutyrate and isovalerate (P<0.05). Supplementation with MCE in no AGPs diet significantly increased the expression of Claudin-1, JAM2 and ZO-1 (P<0.05). And MCE instead of AGPs significantly increased the expression of JAM2 (P<0.05). However, the addition of MCE to the diet significantly reduced the gene expression of MUC2, MUC5ac and MUC13 (P<0.05).[Conclusion] The MCE replace dietary AGPs of yellow-feathered broilers improves the growth performance promotes caecum growth, and help to establish a stable and healthy intestinal barrier which through increasing the number of beneficial bacteria, SCFAs concentration and regulate the expression of tight junction proteins expression. The optimal addition amount of MCE under this experiment is 400 mg/kg.

    参考文献
    [1] Hou B, Zeng JG. Biolological activities of sanguinarine and application of Macleaya cordata extract in animal production. Chinese Journal of Animal Nutrition, 2018, 30(2):413-420. (in Chinese) 侯博, 曾建国. 血根碱的生物学活性及博落回提取物在动物生产中的应用. 动物营养学报, 2018, 30(2):413-420.
    [2] Karimi M, Foroudi M, Abedini MR. Effect of sangrovit on performance and morphology of small intestine and immune response of broilers. Biosciences Biotechnology Research Asia, 2014, 11(2):855-861.
    [3] Kosina P, Gregorova J, Gruz J, Vacek J, Kolar M, Vogel M, Roos W, Naumann K, Simanek V, Ulrichova J. Phytochemical and antimicrobial characterization of Macleaya cordata herb. Fitoterapia, 2010, 81(8):1006-1012.
    [4] Hu GL, Liu J, Liu YQ, Song ZH, Fan ZY, Zhang SR, He X. Effects of Macleaya cordata alkaloids and tea seed polysaccharide on growth performance, serum biochemical indexes and lipid peroxidation of yellow-feathered broilers. Chinese Journal of Animal Nutrition, 2018, 30(11):4626-4634. (in Chinese) 胡贵丽, 刘靖, 刘勇强, 宋泽和, 范志勇, 张石蕊, 贺喜. 博落回生物碱和茶籽多糖对黄羽肉鸡生长性能、血清生化指标及脂质过氧化的影响. 动物营养学报, 2018, 30(11):4626-4634.
    [5] 黄海. 博落回提取物对麻花肉鸡生产性能、肌肉品质及免疫性能的影响. 湖南农业大学硕士学位论文, 2017.
    [6] Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, Kim SG, Li HL, Gao Z, Mahana D, Rodriguez JGZ, Rogers AB, Robine N, Loke P, Blaser MJ. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell, 2014, 158(4):705-721.
    [7] Beuria TK, Santra MK, Panda D. Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly and bundling. Biochemistry, 2005, 44(50):16584-16593.
    [8] Chowdhury K. One step ‘miniprep’ method for the isolation of plasmid DNA. Nucleic Acids Research, 1991, 19(10):2792.
    [9] Suzuki MT, Taylor LT, DeLong EF. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Applied and Environmental Microbiology, 2000, 66(11):4605-4614.
    [10] Guo XL, Xia XJ, Tang RY, Wang KN. Real-time PCR quantification of the predominant bacterial divisions in the distal gut of meishan and landrace pigs. Anaerobe, 2008, 14(4):224-228.
    [11] Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Applied and Environmental Microbiology, 2004, 70(12):7220-7228.
    [12] Khafipour E, Li SC, Plaizier JC, Krause DO. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology, 2009, 75(22):7115-7124.
    [13] Huijsdens XW, Linskens RK, Mak M, Meuwissen SGM, Vandenbroucke-Grauls CMJE, Savelkoul PHM. Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR. Journal of Clinical Microbiology, 2002, 40(12):4423-4427.
    [14] Chen JX, Tellez G, Richards JD, Escobar J. Identification of potential biomarkers for gut barrier failure in broiler chickens. Frontiers in Veterinary Science, 2015, 2:14.
    [15] de Boever S, Vangestel C,de Backer P, Croubels S, Sys SU. Identification and validation of housekeeping genes as internal control for gene expression in an intravenous LPS inflammation model in chickens. Veterinary Immunology and Immunopathology, 2008, 122(3/4):312-317.
    [16] Huang P, Zhang Y, Xiao KP, Jiang F, Wang HC, Tang DZ, Liu D, Liu B, Liu YS, He X, Liu H, Liu XB, Qing ZX, Liu CH, Huang JL, Ren YW, Yun L, Yin LJ, Lin Q, Zeng C, Su XG, Yuan JY, Lin L, Hu NX, Cao HL, Huang SW, Guo YM, Fan W, Zeng JG. The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome, 2018, 6(1):211.
    [17] Pan D, Yu ZT. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes, 2014, 5(1):108-119.
    [18] Meimandipour A, Shuhaimi M, Soleimani AF, Azhar K, Hair-Bejo M, Kabeir BM, Javanmard A, Anas OM, Yazid AM. Selected microbial groups and short-chain fatty acids profile in a simulated chicken cecum supplemented with two strains of Lactobacillus. Poultry Science, 2010, 89(3):470-476.
    [19] van der Wielen PWJJ, Bi湥?摴敥灲敶湥摬敤渠瑓?洠畎捯畴獥?汭慡祮敳爠獓?椠湈?捦潳汴潲湡?楈猬?摕敲癬潩楮摧?漠時?扐愬挠瑶敡牮椠態??偰牥潮挠敆攮搠楒湯杬獥?潯晦?瑶桯敬?乴慩瑬楥漠湦慡汴??挠慡摣敩浤祳?潩普?卤捥楶敥湬捯数獭?潮晴?瑯桦攠?啨湥椠瑣敥摣?卬琠慭瑩散獲?潦晬??浡攠物楮挠慢???ぬづ????ど????????ひ???ㄠ?ひ????戮爠?孰??嵩??漠牡摮敤爠?剮????乮慭瑥瑮牴慡獬猠??卣???敩楯敬牯??匬?′?田朰栬攠猶?刨????礵渳搶?倲??‰儮甼慢湲琾楛琲愰瑝椠癆敬?慮湴愠汈祊猬攠獓?潯晴?朠敋湐攬猠?慯獵獩潳挠楐愬琠敄摵?督楡瑮栠?浈甮挠楔湨?猠祲湯瑬桥攠獯楦猠?潨晥?执牵潴椠汭敩牣?捯桢楩捯歴敡渠獩?眠楮瑵桴?楩湴摩畯据攠摡?湤攠捨牥潡瑬楴捨?攠湎瑡整牵楲瑥椠獒??偩潥畷汳琠片祡?却捲楯敥湮捴敥???は???…?????????????????戬爠?嬨??崩?瘵愷渷??永椹渮欼敢湲 ̄?????敔歯歰数物?????甬氠汃敬物??????楍渮攠牓桨慯湲摴??坨???甠捦楡湴?杹攠湡散?獤瑳爠畡据瑤甠牨敵?慡湮搠?敯硬灯牮敩獣猠楦潵湮?灴物潯瑮攺捲瑯楬潥湳?癯獦??慥摳桩敳獴楡潮湴???浡敲牣楨挠慡湮??潮畯牮湳慴污?潣晨?偰桯祬獹楳潡汣潣杨祡??慤獥瑳爮漠楐湨瑹敳獩瑯楬湯慧汩?慡湬搠??楶癩敥牷?倬栠礲猰椰漱氬漠朸礱?″ㄩ?????木?????????????㈠???扮物?孧??嵓?删慊橡慭湥????佂??攠敊晥敳?????吠牌慁瘬攠牁獮?????据?牊慍挮欠敔湨?????敨潴朠桪敵杮慣湴?卯???慲扯慴汥汩敮爠潚??吱???捴潡獢瑬慩?偨???偡漠汬慩据歫?????湥摥敮爠獴潨湥??????啭?????汮敥瘠数汲獯?慥獩獮漠捏楣慣瑬敵摤?睮椠瑡桮?爠整獨灥椠牡慣瑴潩牮礠?獹祴湯捳祫瑥楬慥汴?癮椮爠畔獨?搠楊獯敵慲獮敡?猠敯癦攠牂楩瑯祬???汣楡湬椠捃慨汥??湳晴敲捹琬椠漱甹猹??椠猲攷愳猨攴猵??有??????????????????????扤牥?孳??崠??椮氠楍灯灬潥畣?偬卡??剳整湲??????漠牯扦愠歴楩獧?????楮浣楴瑩牯慮歳漠灡潮畤氠潴獨????卲潯潬獥愠楩灮椠汥汰慩楴?????慬爠慴歲?噮???牲整渮欠敎汥?即??偮攠?敨特?????潧瑩散浡?????敥牮楣浥獳?匠?‰?漱氬椠渱愶?刱???氱愳猰甮琼楢杲 ̄????漠权摨慡湴潵獲??偤???楍愬洠態湵摭楡獲??倬???硲灮污潹爠楂湇本?瑃桨敡?灮潹琠敇湂瑎椬愠汁?潡晲?浡畬挠楓測?????啲?????慂献?慓?扮楧潵浩慮牡歲敩牮?映漨牐?捥慵牤捯楣湨潥浬慥獲?慴湨摲?潮瑥栩攠物?搠楡猠数慯獴敥獮???汮楨湩楢捩慴汯??桯敦洠楎獆琭犺祂?慡湣摴??慡扴潩牯慮琬漠牉禺??攠摰楨捯楳湰敨?????????水?????????????????ㄠ????Journal of Biological Chemistry, 1997, 272(48):30129-30134.
    [25] Liu G, Guan GP, Fang J, Martínez Y, Chen S, Bin P, Duraipandiyan V, Gong T, Tossou MCB, Al-Dhabi NA, Yin YL. Macleaya cordata extract decreased diarrhea score and enhanced intestinal barrier function in growing piglets. BioMed Research International, 2016, 2016:1069585.
    [26] Zhao HS, Yu HF, Martin TA, Zhang YX, Chen G, Jiang WG. Effect of junctional adhesion molecule-2 expression on cell growth, invasion and migration in human colorectal cancer. International Journal of Oncology, 2016, 48(3):929-936.
    [27] Soendergaard C, Young JA, Kopchick JJ. Growth hormone resistance-special focus on inflammatory bowel disease. International Journal of Molecular Sciences, 2017, 18(5):1019.
    [28] Johansson MEV, Phillipson MP, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 muci
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

柴毛毛,郭玉光,李阳源,彭宇,王永华. 博落回提取物替代抗生素对肉鸡生长性能、盲肠微生物及盲肠紧密连接的影响[J]. 微生物学报, 2020, 60(8): 1718-1728

复制
分享
文章指标
  • 点击次数:553
  • 下载次数: 1062
  • HTML阅读次数: 2203
  • 引用次数: 0
历史
  • 收稿日期:2019-11-13
  • 最后修改日期:2020-01-16
  • 在线发布日期: 2020-08-06
文章二维码