海洋浮游古菌MGII的研究进展
作者:
基金项目:

国家自然科学基金(41906136,41530105,91851210);广东省自然科学基金(2018B030311016);科技部国家重点研发计划全球变化及应对专项(2018YFA0605800);南方科技大学深圳海洋地球古菌组学重点实验室项目(ZDSYS201802081843490)


Advances in marine group II archaea research
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [90]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    海洋浮游古菌MGII是海洋表层水体中最丰富的古菌类群。自1992年被发现以来,如今依然没有被成功分离纯化。前人基于16S rRNA基因的研究认为MGII可以被分为MGIIa、MGIIb和MGIIc三个亚类。近年来,对大量的宏基因组测序数据的分析表明,MGII在分类学上属于广古菌门热源体纲下的一个目,包含MGIIa和MGIIb两个科。以前通过16S rRNA基因高通量测序结果得出的少量MGIIc,在宏基因组测序的数据中并没有找到,因此最近两年的研究认为MGII主要由MGIIa和MGIIb组成。本文综述了海洋浮游古菌MGII的丰度和多样性分布特征、潜在的生态功能、生态关系以及培养等方面的研究进展,比较了MGIIa和MGIIb的异同点,并对当前的研究热点和趋势进行了讨论和展望。

    Abstract:

    Marine Group II (MGII) is the most abundant archaeal group in surface ocean waters. At present, no pure culture of the group has been isolated successfully since they were discovered in 1992. Analysis of the 16S rRNA genes has revealed that MGII mainly consist of two groups, MGIIa and MGIIb, which perform photoheterotrophy and potentially play an important role in marine carbon cycle. Phylogenetic classification based on the 16S rRNA gene assigned MGIIa and MGIIb as two families within an order-level lineage under Thermoplasmata. The phylogenetic position of a third group, MGIIc, is ambiguous due to the lack of their 16S rRNA gene sequences and absence in the metagenome data. This mini-review aims to provide the latest information on the distribution, abundance and diversity, metabolic capabilities and potential ecological functions, as well as efforts being made in enrichment and isotope labeling studies of MGII. Insights on future research directions are also provided.

    参考文献
    [1] Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain:the primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(11):5088-5090.
    [2] Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms:proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(12):4576-4579.
    [3] Fuhrman JA, McCallum K, Davis AA. Novel major archaebacterial group from marine plankton. Nature, 1992, 356(6365):148-149.
    [4] DeLong EF. Archaea in coastal marine environments. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(12):5685-5689.
    [5] Fuhrman JA, Davis AA. Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Marine Ecology Progress Series, 1997, 150:275-285.
    [6] López-García P, Moreira D, López-López A, Rodríguez-Valera F. A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions. Environmental Microbiology, 2001, 3(1):72-78.
    [7] Karner MB, DeLong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 2001, 409(6819):507-510.
    [8] Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004, 304(5667):66-74.
    [9] Schleper C, Jurgens G, Jonuscheit M. Genomic studies of uncultivated archaea. Nature Reviews Microbiology, 2005, 3(6):479-488.
    [10] Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 2005, 437(7058):543-546.
    [11] Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. Mesophilic Crenarchaeota:proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology, 2008, 6(3):245-252.
    [12] Zhang CL, Xie W, Martin-Cuadrado AB, Rodriguez-Valera F. Marine Group II Archaea, potentially important players in the global ocean carbon cycle. Frontiers in Microbiology, 2015, 6:1108.
    [13] Santoro AE, Richter RA, Dupont CL. Planktonic marine archaea. Annual Review of Marine Science, 2019, 11:131-158.
    [14] Stahl DA, de la Torre JR. Physiology and diversity of ammonia-oxidizing Archaea. Annual Review of Microbiology, 2012, 66:83-101.
    [15] Elling FJ, Könneke M, Lipp JS, Becker KW, Gagen EJ, Hinrichs KU. Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment. Geochimica et Cosmochimica Acta, 2014, 141:579-597.
    [16] Li M, Baker BJ, Anantharaman K, Jain S, Breier JA, Dick GJ. Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea. Nature Communications, 2015, 6:8933.
    [17] Rinke C, Rubino F, Messer LF, Youssef N, Parks DH, Chuvochina M, Brown M, Jeffries T, Tyson GW, Seymour JR, Hugenholtz P. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). The ISME Journal, 2019, 13(3):663-675.
    [18] Xie W, Luo HW, Murugapiran SK, Dodsworth JA, Chen SZ, Sun Y, Hedlund BP, Wang P, Fang HY, Deng MH, Zhang CL. Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary:implications for their niche adaptation. Environmental Microbiology, 2018, 20(2):734-754.
    [19] Tully BJ. Metabolic diversity within the globally abundant Marine Group II Euryarchaea offers insight into ecological patterns. Nature Communications, 2019, 10(1):271.
    [20] Parada AE, Fuhrman JA. Marine archaeal dynamics and interactions with the microbial community over 5 years from surface to seafloor. The ISME Journal, 2017, 11(11):2510-2525.
    [21] Fuhrman JA, Ouverney CC. Marine microbial diversity studied via 16S rRNA sequences:cloning results from coastal waters and counting of native archaea with fluorescent single cell probes. Aquatic Ecology, 1998, 32(1):3-15.
    [22] Lincoln SA, Wai B, Eppley JM, Church MJ, Summons RE, DeLong EF. Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(27):9858-9863.
    [23] Liu HD, Zhang CL, Yang CY, Chen SZ, Cao ZW, Zhang ZW, Tian JW. Marine Group II dominates planktonic Archaea in water column of the Northeastern South China Sea. Frontiers in Microbiology, 2017, 8:1098.
    [24] Pernthaler A, Preston CM, Pernthaler J, DeLong EF, Amann R. Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and Archaea. Applied and Environmental Microbiology, 2002, 68(2):661-667.
    [25] Alderkamp AC, Sintes E, Herndl GJ. Abundance and activity of major groups of prokaryotic plankton in the coastal North Sea during spring and summer. Aquatic Microbial Ecology, 2006, 45(3):237-246.
    [26] DeLong EF, Taylor LT, Marsh TL, Preston CM. Visualization and enumeration of marine planktonic Archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Applied and Environmental Microbiology, 1999, 65(12):5554-5563.
    [27] Mincer TJ, Church MJ, Taylor LT, Preston C, Karl DM, DeLong EF. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environmental Microbiology, 2007, 9(5):1162-1175.
    [28] Orsi WD, Smith JM, Wilcox HM, Swalwell JE, Carini P, Worden AZ, Santoro AE. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter. The ISME Journal, 2015, 9(8):1747-1763.
    [29] Simon M, Glöckner FO, Amann R. Different community structure and temperature optima of heterotrophic picoplankton in various regions of the Southern Ocean. Aquatic Microbial Ecology, 1999, 18(3):275-284.
    [30] Church MJ, DeLong EF, Ducklow HW, Karner MB, Preston CM, Karl DM. Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnology and Oceanography, 2003, 48(5):1893-1902.
    [31] Amano-Sato C, Akiyama S, Uchida M, Shimada K, Utsumi M. Archaeal distribution and abundance in water masses of the Arctic Ocean, Pacific sector. Aquatic Microbial Ecology, 2013, 69(2):101-112.
    [32] Kirchman DL, Elifantz H, Dittel AI, Malmstrom RR, Cottrell MT. Standing stocks and activity of Archaea and Bacteria in the western Arctic Ocean. Limnology and Oceanography, 2007, 52(2):495-507.
    [33] Alonso-Sáez L, Sánchez O, Gasol JM, Balagué V, Pedrós-Alio C. Winter-to-summer changes in the composition and single-cell activity of near-surface Arctic prokaryotes. Environmental Microbiology, 2008, 10(9):2444-2454.
    [34] Galand PE, Lovejoy C, Pouliot J, Vincent WF. Heterogeneous archaeal communities in the particle-rich environment of an arctic shelf ecosystem. Journal of Marine Systems, 2008, 74(3/4):774-782.
    [35] Massana R, DeLong EF, Pedrós-Alió C. A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Applied and Environmental Microbiology, 2000, 66(5):1777-1787.
    [36] Bano N, Ruffin S, Ransom B, Hollibaugh JT. Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages. Applied and Environmental Microbiology, 2004, 70(2):781-789.
    [37] Xia XM, Guo W, Liu HB. Dynamics of the bacterial and archaeal communities in the Northern South China Sea revealed by 454 pyrosequencing of the 16S rRNA gene. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 117:97-107.
    [38] Pereira O, Hochart C, Auguet JC, Debroas D, Galand PE. Genomic ecology of Marine Group II, the most common marine planktonic Archaea across the surface ocean. MicrobiologyOpen, 2019, 8(9):e00852.
    [39] Frigaard NU, Martinez A, Mincer TJ, DeLong EF. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature, 2006, 439(7078):847-850.
    [40] Deschamps P, Zivanovic Y, Moreira D, Rodriguez-Valera F, López-García P. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota. Genome Biology and Evolution, 2014, 6(7):1549-1563.
    [41] López-García P, López-López A, Moreira D, Rodríguez-Valera F. Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiology Ecology, 2001, 36(2/3):193-202.
    [42] Galand PE, Casamayor EO, Kirchman DL, Potvin M, Lovejoy C. Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. The ISME Journal, 2009, 3(7):860-869.
    [43] Xia XM, Guo W, Liu HB. Basin scale variation on the composition and diversity of Archaea in the Pacific Ocean. Frontiers in Microbiology, 2017, 8:2057.
    [44] Orellana LH, Ben Francis T, Krüger K, Teeling H, Müller MC, Fuchs BM, Konstantinidis KT, Amann RI. Niche differentiation among annually recurrent coastal Marine Group II Euryarchaeota. The ISME Journal, 2019, 13(12):3024-3036.
    [45] Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nature Microbiology, 2016, 1:16005.
    [46] Murray AE, Wu KY, Moyer CL, Karl DM, DeLong EF. Evidence for circumpolar distribution of planktonic Archaea in the Southern Ocean. Aquatic Microbial Ecology, 1999, 18(3):263-273.
    [47] Galand PE, Gutiérrez-Provecho C, Massana R, Gasol JM, Casamayor EO. Inter-annual recurrence of archaeal assemblages in the coastal NW Mediterranean Sea (Blanes Bay Microbial Observatory). Limnology and Oceanography, 2010, 55(5):2117-2125.
    [48] Hugoni M, Taib N, Debroas D, Domaizon I, Jouan Dufournel I, Bronner G, Salter I, Agogué H, Mary I, Galand PE. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(15):6004-6009.
    [49] Galand PE, Lovejoy C, Vincent WF. Remarkably diverse and contrasting archaeal communities in a large arctic river and the coastal Arctic Ocean. Aquatic Microbial Ecology, 2006, 44(2):115-126.
    [50] Martin-Cuadrado AB, Garcia-Heredia I, Moltó AG, López-Úbeda R, Kimes N, López-García P, Moreira D, Rodriguez-Valera F. A new class of marine Euryarchaeota group II from the mediterranean deep chlorophyll maximum. The ISME Journal, 2015, 9(7):1619-1634.
    [51] Tian JW, Fan L, Liu HD, Liu JW, Li Y, Qin QL, Gong Z, Chen HT, Sun ZB, Zou L, Wang XC, Xu HZ, Bartlett D, Wang M, Zhang YZ, Zhang XH, Zhang CL. A nearly uniform distributional pattern of heterotrophic bacteria in the Mariana Trench interior. Deep Sea Research Part I:Oceanographic Research Papers, 2018, 142:116-126.
    [52] Crump BC, Baross JA. Archaeaplankton in the Columbia River, its estuary and the adjacent coastal ocean, USA. FEMS Microbiology Ecology, 2000, 31(3):231-239.
    [53] Liu JW, Yu SL, Zhao MX, He BY, Zhang XH. Shifts in archaeaplankton community structure along ecological gradients of Pearl Estuary. FEMS Microbiology Ecology, 2014, 90(2):424-435.
    [54] Massana R, Taylor LT, Murray AE, Wu KY, Jeffrey WH, DeLong EF. Vertical distribution and temporal variation of marine planktonic archaea in the Gerlache Strait, Antarctica, during early spring. Limnology and Oceanography, 1998, 43(4):607-617.
    [55] Wuchter C, Abbas B, Coolen MJL, Herfort L, Van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damsté JSS. Archaeal nitrification in the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33):12317-12322.
    [56] Levipan HA, Quiñones RA, Urrutia H. A time series of prokaryote secondary production in the oxygen minimum zone of the Humboldt current system, off central Chile. Progress in Oceanography, 2007, 75(3):531-549.
    [57] Beman JM, Sachdeva R, Fuhrman JA. Population ecology of nitrifying Archaea and Bacteria in the southern California Bight. Environmental Microbiology, 2010, 12(5):1282-1292.
    [58] Beman JM, Steele JA, Fuhrman JA. Co-occurrence patterns for abundant marine archaeal and bacterial lineages in the deep chlorophyll maximum of coastal California. The ISME Journal, 2011, 5(7):1077-1085.
    [59] Reysenbach AL, Flores GE. Electron microscopy encounters with unusual thermophiles helps direct genomic analysis of Aciduliprofundum boonei. Geobiology, 2008, 6(3):331-336.
    [60] Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV. Untangling genomes from metagenomes:revealing an uncultured class of marine Euryarchaeota. Science, 2012, 335(6068):587-590.
    [61] Baker BJ, Sheik CS, Taylor CA, Jain S, Bhasi A, Cavalcoli JD, Dick GJ. Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. The ISME Journal, 2013, 7(10):1962-1973.
    [62] Li X, Qin L. Metagenomics-based drug discovery and marine microbial diversity. Trends in Biotechnology, 2005, 23(11):539-543.
    [63] Orsi WD, Smith JM, Liu ST, Liu ZF, Sakamoto CM, Wilken S, Poirier C, Richards TA, Keeling PJ, Worden AZ, Santoro AE. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. The ISME Journal, 2016, 10(9):2158-2173.
    [64] Aylward FO, Eppley JM, Smith JM, Chavez FP, Scholin CA, Delong EF. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(17):5443-5448.
    [65] Boutrif M, Garel M, Cottrell MT, Tamburini C. Assimilation of marine extracellular polymeric substances by deep-sea prokaryotes in the NW Mediterranean Sea. Environmental Microbiology Reports, 2011, 3(6):705-709.
    [66] Bergauer K, Fernandez-Guerra A, Garcia JAL, Sprenger RR, Stepanauskas R, Pachiadaki MG, Jensen ON, Herndl GJ. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(3):E400-E408.
    [67] Herndl GJ, Reinthaler T, Teira E, Van Aken H, Veth C, Pernthaler A, Pernthaler J. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Applied and Environmental Microbiology, 2005, 71(5):2303-2309.
    [68] Martin-Cuadrado AB, Rodriguez-Valera F, Moreira D, Alba JC, Ivars-Martínez E, Henn MR, Talla E, López-García P. Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. The ISME Journal, 2008, 2(8):865-886.
    [69] Moreira D, Rodríguez-Valera F, López-García P. Analysis of a genome fragment of a deep-sea uncultivated Group II euryarchaeote containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes. Environmental Microbiology, 2004, 6(9):959-969.
    [70] Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, Chaffron S, Ignacio-Espinosa JC, Roux S, Vincent F, Bittner L, Darzi Y, Wang J, Audic S, Berline L, Bontempi G, Cabello AM, Coppola L, Cornejo-Castillo FM, d'Ovidio F, De Meester L, Ferrera I, Garet-Delmas MJ, Guidi L, Lara E, Pesant S, Royo-Llonch M, Salazar G, Sánchez P, Sebastian M, Souffreau C, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Tara Oceans coordinators, Gorsky G, Not F, Ogata H, Speich S, Stemmann L, Weissenbach J, Wincker P, Acinas SG, Sunagawa S, Bork P, Sullivan MB, Karsenti E, Bowler C, De Vargas C, Raes J. Ocean plankton. Determinants of community structure in the global plankton interactome. Science, 2015, 348(6237):1262073.
    [71] Jiao N, Luo T, Zhang R, Yan W, Lin Y, Johnson ZI, Tian J, Yuan D, Yang Q, Zheng Q, Sun J, Hu D, Wang P. Presence of Prochlorococcus in the aphotic waters of the western Pacific Ocean. Biogeosciences, 2014, 11(8):2391-2400.
    [72] Gilbert JA, Dupont CL. Microbial metagenomics:beyond the genome. Annual Review of Marine Science, 2011, 3:347-371.
    [73] Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, Kim DY, Chow CET, Sachdeva R, Jones AC, Schwalbach MS, Rose JM, Hewson I, Patel A, Sun FZ, Caron DA, Fuhrman JA. Marine bacterial, archaeal and protistan association networks reveal ecological linkages. The ISME Journal, 2011, 5(9):1414-1425.
    [74] Sañudo-Wilhelmy SA, Gómez-Consarnau L, Suffridge C, Webb EA. The role of B vitamins in marine biogeochemistry. Annual Review of Marine Science, 2014, 6:339-367.
    [75] Doxey AC, Kurtz DA, Lynch MDJ, Sauder LA, Neufeld JD. Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. The ISME Journal, 2015, 9(2):461-471.
    [76] Heal KR, Qin W, Ribalet F, Bertagnolli AD, Coyote-Maestas W, Hmelo LR, Moffett JW, Devol AH, Armbrust EV, Stahl DA, Ingalls AE. Two distinct pools of B12 analogs reveal community interdependencies in the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(2):364-369.
    [77] Ahlgren NA, Chen YY, Needham DM, Parada AE, Sachdeva R, Trinh V, Chen T, Fuhrman JA. Genome and epigenome of a novel marine Thaumarchaeota strain suggest viral infection, phosphorothioation DNA modification and multiple restriction systems. Environmental Microbiology, 2017, 19(6):2434-2452.
    [78] Philosof A, Yutin N, Flores-Uribe J, Haron I, Koonin EV, Béjà O. Novel abundant oceanic viruses of uncultured marine group II Euryarchaeota. Current Biology, 2017, 27(9):1362-1368.
    [79] Vik DR, Roux S, Brum JR, Bolduc B, Emerson JB, Padilla CC, Stewart FJ, Sullivan MB. Putative archaeal viruses from the mesopelagic ocean. PeerJ, 2017, 5:e3428.
    [80] Nishimura Y, Watai H, Honda T, Mihara T, Omae K, Roux S, Blanc-Mathieu R, Yamamoto K, Hingamp P, Sako Y, Sullivan MB, Goto S, Ogata H, Yoshida T. Environmental viral genomes shed new light on virus-host interactions in the ocean. mSphere, 2017, 2(2):e00359-16.
    [81] Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature, 2002, 418(6898):630-633.
    [82] Besseling MA, Hopmans EC, Bale NJ, Schouten S, Damsté JSS, Villanueva L. The absence of intact polar lipid-derived GDGTs in marine waters dominated by Marine Group II:implications for lipid biosynthesis in Archaea. Scientific Reports, 2020, 10(1):294.
    [83] Pan XJ, Jiao NZ. Advances in research of marine archaea. Marine Sciences, 2001, 25(2):20-23. (in Chinese) 潘晓驹, 焦念志. 海洋古菌的研究进展. 海洋科学, 2001, 25(2):20-23.
    [84] Ren LC, Li MY, Bao SX. The investigation of the marine archaea diversity. Life Science Research, 2006, 10(2):67-70. (in Chinese) 任立成, 李美英, 鲍时翔. 海洋古菌多样性研究进展. 生命科学研究, 2006, 10(2):67-70.
    [85] Zhao MX, Li DW, Xing L. Using archaea biomarker index TEX86 as a paleo-sea surface temperature proxy. Marine Geology & Quaternary Geology, 2009, 29(3):75-84. (in Chinese) 赵美训, 李大伟, 邢磊. 古菌生物标志物古海水温度指标TEX86研究进展. 海洋地质与第四纪地质, 2009, 29(3):75-84.
    [86] Lai DX, Xie W, Fan L, Tao JC, Hu AY, Wang P, Zhu YQ, Zhang CL. The spatial patterning of Marine Group II archaea in Chinese coastal and esturine waters. Bulletin of National Natural Science Foundation of China, 2018, 32(5):459-470. (in Chinese) 赖登训, 谢伟, 范陆, 陶建昌, 胡安谊, 王鹏, 朱元清, 张传伦. MGII古菌在中国近海和河口的空间分布特征. 中国科学基金, 2018, 32(5):459-470.
    [87] Zhu SQ, Liu JW, Zheng YF, Liu J, Meng Z, Liu XY, Wang YW, Zhang XH. An overview of archaeal community structure in the Chinese coastal areas. Marine Sciences, 2019, 43(5):123-134. (in Chinese) 朱尚清, 刘吉文, 郑艳芬, 刘骥, 孟哲, 刘晓月, 王雅文, 张晓华. 中国近海区域古菌群落结构研究概述. 海洋科学, 2019, 43(5):123-134.
    [88] Reysenbach AL, Liu YT, Banta AB, Beveridge TJ, Kirshtein JD, Schouten S, Tivey MK, Von Damm KL, Voytek MA. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature, 2006, 442(7101):444-447.
    [89] Besseling MA, Hopmans EC, Bale NJ, Schouten S, Sinninghe Damsté JS, Villanueva L. The absence of intact polar lipid-derived GDGTs in marine waters dominated by Marine Group II:implications for lipid biosynthesis in Archaea. Scientific Reports, 2020, 10(1):294.
    [90] Ma CL, Coffinet S, Lipp JS, Hinrichs KU, Zhang CL. Marine Group II Euryarchaeota contribute to the archaeal lipid pool in Northwestern Pacific Ocean surface waters. Frontiers in Microbiology, 2020, 6:1034.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘浩东,闫荣曼,张传伦. 海洋浮游古菌MGII的研究进展[J]. 微生物学报, 2020, 60(9): 1834-1851

复制
分享
文章指标
  • 点击次数:616
  • 下载次数: 2351
  • HTML阅读次数: 3281
  • 引用次数: 0
历史
  • 收稿日期:2020-02-29
  • 最后修改日期:2020-05-19
  • 在线发布日期: 2020-09-16
文章二维码