中国东海二甲基巯基丙酸内盐(DMSP)合成与降解菌的水平和垂直分布
作者:
基金项目:

国家重点研发计划(2016YFA0601303);国家自然科学基金(91751202)


Horizontal and vertical distribution of dimethylsulfoniopropionate (DMSP) producing and catabolizing bacteria in the East China Sea
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 二甲基巯基丙酸内盐(dimethylsulfoniopropionate,DMSP)及其裂解产物二甲基硫(dimethyl sulfide,DMS)在海洋硫循环中发挥重要作用。目前关于DMSP降解细菌的分布已有部分报道,但其合成细菌的研究才刚刚起步。本文拟研究中国东海水体DMSP合成与降解菌及基因的水平和垂直分布(1000 m水深)差异,分析其对环境梯度变化的响应。[方法] 利用流式细胞仪计数海水样品中微微型浮游生物的数量,通过荧光定量PCR和高通量测序手段定量测定DMSP合成基因(dsyBmmtN)及物种、DMSP降解基因(dddPdmdA)及物种的丰度,分析其在东海海域水平及垂直方向上的分布差异。[结果] 在垂直方向上,聚球藻、原绿球藻、微微型真核生物和异养细菌丰度随着水深的增加而先增后减,最大值位于30-50 m附近。表层(4 m左右)水体的DMSP合成及降解基因丰度最高,DMSP合成菌(如AlteromonasPhaeobacterPelagibaca等)丰度也最高;随着水深增加,表层以下水体中DMSP合成及降解基因和物种丰度先增加后降低,峰值均出现在100-150 m;100 m以下,DMSP降解基因丰度迅速下降,而合成基因丰度下降程度较低,而且接近底层(>500 m)时出现随水深逐渐增加的趋势。水平方向二者变化规律不明显。浅层水体(≤100 m)和深层水体(>100 m)细菌群落结构存在显著差异,前者拥有较高比例的黄杆菌纲、放线菌纲和蓝细菌纲细菌,后者α变形菌纲细菌丰度较高。[结论] 100 m及以浅和100 m以深的浮游细菌群落结构存在显著差异。表层水体中DMSP合成和降解细菌的丰度最高,100-150 m水体次之,但100-1022 m介导的DMSP合成和降解细菌丰度的变化趋势有较大差别。

    Abstract:

    [Objective] Dimethylsulfoniopropionate (DMSP) and its cleavage product dimethyl sulfide (DMS) play important roles in sulfur cycle of the marine environment. At present, some studies focus on the distribution of DMSP catabolizing bacteria, while studies on DMSP producing bacteria are just beginning. The objective of this study was to analyze the horizontal and vertical (1000 m depth) distribution of DMSP producing and catabolizing bacteria as well as genes in the East China Sea, and to study their responses to environmental parameters. [Methods] We quantified the abundance of microplankton by using flow cytometry. We measured the abundance of DMSP producing (dsyB and mmtN) and catabolising (dddP and dmdA including C/2 and D/1 subclade) genes and organisms by qPCR and high-throughput amplicon sequencing. [Results] The abundances of Synechococcus, Prochlorococcus, picoeukaryotes and heterotrophic bacteria increased and then decreased in the vertical profile with maximum located at 30-50 m depth. Surface water samples (~4 m) possessed the highest abundance of DMSP producing and catabolizing genes as well as the abundance of DMSP producers (Alteromonas, Phaeobacter and Pelagibaca). With increasing water depth, the abundances of DMSP producing and catabolizing genes and organisms increased and then decreased with peak values at the 100-150 m depth. The abundance of DMSP catabolizing genes decreased rapidly in the water below 100 m depth. However, the abundance of DMSP producing genes decreased slowly in the water below 100 m depth and even increased in the waters from 500 m to 1022 m depth. In contrast, the abundances of DMSP producing and catabolizing genes and organisms did not show apparent horizontal distribution patterns. The bacterial community composition showed significant difference between shallow water (≤100 m) and deep water (>100 m), and the relative abundance of the Flavobacteriia, Actinobacteria and Cyanobacteria in the shallow water were higher than that in the deep water, in contrast with an opposite trend for the Alphaproteobacteria in the deep water. [Conclusion] Bacterial communities differed significantly between waters below and above the 100 m depth. The surface water possessed the highest abundance of DMSP producing and catabolizing bacteria, followed by the 100-150 m water, with DMSP producing and catabolizing bacteria showing significantly different variation trends in the waters of 100-1022 m depth.

    参考文献
    [1] Ksionzek KB, Lechtenfeld OJ, McCallister SL, Schmitt-Kopplin P, Geuer JK, Geibert W, Koch BP. Dissolved organic sulfur in the ocean:Biogeochemistry of a petagram inventory. Science, 2016, 354(6311):456-459.
    [2] Zhang XH, Liu J, Liu JL, Yang GP, Xue CX, Curson ARJ, Todd JD. Biogenic production of DMSP and its degradation to DMS-their roles in the global sulfur cycle. Science China Life Sciences, 2019, 62(10):1296-1319.
    [3] Kellogg WW, Cadle RD, Allen ER, Lazrus AL, Martell EA. The sulfur cycle. Science, 1972, 175(4022):587-596.
    [4] Curson ARJ, Todd JD, Sullivan MJ, Johnston AWB. Catabolism of dimethylsulphoniopropionate:microorganisms, enzymes and genes. Nature Reviews Microbiology, 2011, 9(12):849-859.
    [5] Lovelock JE, Maggs RJ, Rasmussen RA. Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature, 1972, 237(5356):452-453.
    [6] Sunda W, Kieber DJ, Kiene RP, Huntsman S. An antioxidant function for DMSP and DMS in marine algae. Nature, 2002, 418(6895):317-320.
    [7] Wolfe GV, Steinke M, Kirst GO. Grazing-activated chemical defence in a unicellular marine alga. Nature, 1997, 387(6636):894-897.
    [8] Charlson RJ, Lovelock JE, Andreae MO, Warren SG. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 1987, 326(6114):655-661.
    [9] Boucher O, Pham M. History of sulfate aerosol radiative forcings. Geophysical Research Letters, 2002, 29(9):22-1-22-4.
    [10] Curson ARJ, Liu J, Bermejo Martínez A, Green RT, Chan Y, Carrión O, Williams BT, Zhang SH, Yang GP, Bulman Page PC, Zhang XH, Todd JD. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nature Microbiology, 2017, 2(5):17009.
    [11] Williams BT, Cowles K, Bermejo Martínez A, Curson ARJ, Zheng YF, Liu JL, Newton-Payne S, Hind AJ, Li CY, Rivera PPL, Carrión O, Liu J, Spurgin LG, Brearley CA, Mackenzie BW, Pinchbeck BJ, Peng M, Pratscher J, Zhang XH, Zhang YZ, Murrell JC, Todd JD. Bacteria are important dimethylsulfoniopropionate producers in coastal sediments. Nature Microbiology, 2019, 4(11):1815-1825.
    [12] Alcolombri U, Ben-Dor S, Feldmesser E, Levin Y, Tawfik DS, Vardi A. Identification of the algal dimethyl sulfide-releasing enzyme:A missing link in the marine sulfur cycle. Science, 2015, 348(6242):1466-1469.
    [13] Reisch CR, Moran MA, Whitman WB. Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Frontiers in Microbiology, 2011, 2:172.
    [14] Reisch CR, Stoudemayer MJ, Varaljay VA, Amster IJ, Moran MA, Whitman WB. Novel pathway for assimilation of dimethylsulphoniopropionate widespread in marine bacteria. Nature, 2011, 473(7346):208-211.
    [15] Cui YS, Suzuki S, Omori Y, Wong SK, Ijichi M, Kaneko R, Kameyama S, Tanimoto H, Hamasaki K. Abundance and distribution of dimethylsulfoniopropionate degradation genes and the corresponding bacterial community structure at dimethyl sulfide hot spots in the tropical and subtropical Pacific Ocean. Applied and Environmental Microbiology, 2015, 81(12):4184-4194.
    [16] Liu JL, Liu J, Zhang SH, Liang JC, Lin HY, Song DL, Yang GP, Todd JD, Zhang XH. Novel insights into bacterial dimethylsulfoniopropionate catabolism in the East China Sea. Frontiers in Microbiology, 2018, 9:3206.
    [17] Howard EC, Sun SL, Biers EJ, Moran MA. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environmental Microbiology, 2008, 10(9):2397-2410.
    [18] Raina JB, Dinsdale EA, Willis BL, Bourne DG. Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? Trends in Microbiology, 2010, 18(3):101-108.
    [19] Sun J, Todd JD, Thrash JC, Qian YP, Qian MC, Temperton B, Guo JZ, Fowler EK, Aldrich JT, Nicora CD, Lipton MS, Smith RD, De Leenheer P, Payne SH, Johnston AWB, Davie-Martin CL, Halsey KH, Giovannoni SJ. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nature Microbiology, 2016, 1(8):16065.
    [20] Thume K, Gebser B, Chen L, Meyer N, Kieber DJ, Pohnert G. The metabolite dimethylsulfoxonium propionate extends the marine organosulfur cycle. Nature, 2018, 563(7731):412-415.
    [21] Zeng YX, Qiao ZY, Yu Y, Li HR, Luo W. Diversity of bacterial dimethylsulfoniopropionate degradation genes in surface seawater of Arctic Kongsfjorden. Scientific Reports, 2016, 6(1):33031.
    [22] Lee HJ, Chao SY. A climatological description of circulation in and around the East China Sea. Deep Sea Research Part II:Topical Studies in Oceanography, 2003, 50(6/7):1065-1084.
    [23] Gong GC, Wen YH, Wang BW, Liu GJ. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Research Part II:Topical Studies in Oceanography, 2003, 50(6/7):1219-1236.
    [24] Yeh YC, Peres-Neto PR, Huang SW, Lai YC, Tu CY, Shiah FK, Gong GC, Hsieh CH. Determinism of bacterial metacommunity dynamics in the southern East China Sea varies depending on hydrography. Ecography, 2015, 38(2):198-212.
    [25] Cai YM, Ning XR, Liu CG, Hao Q. Distribution pattern of photosynthetic picoplankton and heterotrophic bacteria in the Northern South China Sea. Journal of Integrative Plant Biology, 2007, 49(3):282-298.
    [26] Zhang Y, Zhao ZH, Dai MH, Jiao NZ, Herndl GJ. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Molecular Ecology, 2014, 23(9):2260-2274.
    [27] Carpenter JH. The accuracy of the Winkler method for dissolved oxygen analysis. Limnology and Oceanography, 1965, 10(1):135-140.
    [28] Liu JW, Fu BB, Yang HM, Zhao MX, He BY, Zhang XH. Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary:the potential impact of hypoxia and nutrients. Frontiers in Microbiology, 2015, 6:64.
    [29] Zhao L, Zhao YC, Wang CF, Zhang WC, Sun XX, Li XG, Zhao Y, Xiao T. Comparison in the distribution of microbial food web components in the Y3 and M2 seamounts in the tropical Western Pacific. Oceanologia et Limnologia Sinica, 2017, 48(6):1446-1455. (in Chinese) 赵丽, 赵燕楚, 王超锋, 张武昌, 孙晓霞, 李学刚, 赵苑, 肖天. 热带西太平洋Y3和M2海山微食物网主要类群生态分布与比较. 海洋与湖沼, 2017, 48(6):1446-1455.
    [30] Yin Q, Fu BB, Li BY, Shi XC, Inagaki F, Zhang XH. Spatial variations in microbial community composition in surface seawater from the ultra-oligotrophic center to rim of the South Pacific Gyre. PLoS One, 2013, 8(2):e55148.
    [31] Levine NM, Varaljay VA, Toole DA, Dacey JWH, Doney SC, Moran MA. Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea. Environmental Microbiology, 2012, 14(5):1210-1223.
    [32] Varaljay VA, Howard EC, Sun SL, Moran MA. Deep sequencing of a dimethylsulfoniopropionate-degrading gene (dmdA) by using PCR primer pairs designed on the basis of marine metagenomic data. Applied and Environmental Microbiology, 2010, 76(2):609-617.
    [33] Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A, Knight R. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems, 2016, 1(1):e00009-15.
    [34] Liang JC, Liu JW, Wang XL, Lin HY, Liu JL, Zhou S, Sun H, Zhang XH. Spatiotemporal dynamics of free-living and particle-associated Vibrio communities in the northern Chinese marginal seas. Applied and Environmental Microbiology, 2019, 85(9):e00217-19.
    [35] Yang GP, Zhuang GC, Zhang HH, Dong Y, Yang J. Distribution of dimethylsulfide and dimethylsulfoniopropionate in the Yellow Sea and the East China Sea during spring:Spatio-temporal variability and controlling factors. Marine Chemistry, 2012, 138-139:21-31.
    [36] Tan TT, Wu X, Liu CY, Yang GP. Distributions of dimethylsulfide and its related compounds in the Yangtze (Changjiang) River Estuary and its adjacent waters in early summer. Continental Shelf Research, 2017, 146:89-101.
    [37] Keller MD, Bellows WK, Guillard RRL. Dimethyl sulfide production in marine phytoplankton//Saltzman ES, Cooper WJ. Biogenic Sulfur in the Environment. Washington:American Chemical Society, 1989:167-182.
    [38] Rooney-Varga JN, Giewat MW, Savin MC, Sood S, LeGresley M, Martin JL. Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Microbial Ecology, 2005, 49(1):163-175.
    [39] 柳敬丽. 基于稳定同位素探针等技术对DMSP合成和降解细菌及其功能基因多样性的研究. 中国海洋大学博士学位论文, 2019.
    [40] 周晓英. 长江口海域表层水温变化的气候特征. 中国海洋大学硕士学位论文, 2005.
    [41] Morris RM, Rappé MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, Giovannoni SJ. SAR11 clade dominates ocean surface bacterioplankton communities. Nature, 2002, 420(6917):806-810.
    [42] Todd JD, Curson ARJ, Dupont CL, Nicholson P, Johnston AWB. The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. Environmental Microbiology, 2009, 11(6):1376-1385.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙浩,谭斯尹,梁金昌,杨桂朋,辛宇,张晓华. 中国东海二甲基巯基丙酸内盐(DMSP)合成与降解菌的水平和垂直分布[J]. 微生物学报, 2020, 60(9): 1865-1881

复制
分享
文章指标
  • 点击次数:597
  • 下载次数: 1483
  • HTML阅读次数: 4086
  • 引用次数: 0
历史
  • 收稿日期:2020-03-15
  • 最后修改日期:2020-04-14
  • 在线发布日期: 2020-09-16
文章二维码