“海油雪”的形成机制及其生态效应
作者:
基金项目:

国家自然科学基金(91851110,41701541)


Formation mechanism and ecological effect of “marine oil snow”
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [84]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    2010年深水地平线事故发生后,在被石油污染的墨西哥湾观察到大量的“海油雪”形成,海油雪的相关研究成为人们关注的焦点。海油雪是指石油、浮游植物、细菌黏液等组成的团聚物,能够将石油从海面沉降至海底,对石油的风化过程产生深远影响。因此,研究海油雪的形成机制和生态效应,对于深入认识海油雪在石油-海洋系统中的作用具有重要意义。本文从物理凝聚、微生物和石油分散剂三个方面对海油雪的形成机制展开探讨,分析了海油雪对石油风化、底栖生物毒性和其他污染物迁移转化的影响,并结合现有研究进行了展望。

    Abstract:

    After the Deepwater Horizon accident in 2010, a large number of “marine oil snow” (MOS) were observed in the oil-polluted area of the Gulf of Mexico. MOS is a kind of agglomerate composed of oil, phytoplankton and bacterial slime, which can sink oil from the sea surface to the seafloor and has great influence to the weathering process of oil. Therefore, investigating the formation mechanism and ecological effect of marine oil snow is of great significance for further understanding the role of marine oil snow in the oil-ocean system. In this paper, the formation mechanism of MOS is discussed from three aspects of physical agglomeration, microorganism and oil dispersant, and the influences of MOS on oil weathering, benthos toxicity and migration and transformation of other pollutants are analyzed. Finally, future research directions are proposed.

    参考文献
    [1] Fu J, Gong YY, Zhao X, O'Reilly SE, Zhao DY. Effects of oil and dispersant on formation of marine oil snow and transport of oil hydrocarbons. Environmental Science & Technology, 2014, 48(24):14392-14399.
    [2] Alldredge AL, Silver MW. Characteristics, dynamics and significance of marine snow. Progress in Oceanography, 1988, 20(1):41-82.
    [3] Thornton DCO. Diatom aggregation in the sea:mechanisms and ecological implications. European Journal of Phycology, 2002, 37(2):149-161.
    [4] Silver MW, Shanks AL, Trent JD. Marine snow:microplankton habitat and source of small-scale patchiness in pelagic populations. Science, 1978, 201(4353):371-373.
    [5] Turner JT. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Progress in Oceanography, 2015, 130:205-248.
    [6] Xu C, Lin P, Zhang SJ, Sun LN, Xing W, Schwehr KA, Chin WC, Wade TL, Knap AH, Hatcher PG, Yard A, Jiang C, Quigg A, Santschi PH. The interplay of extracellular polymeric substances and oil/Corexit to affect the petroleum incorporation into sinking marine oil snow in four mesocosms. Science of the Total Environment, 2019, 693:133626.
    [7] Passow U, Ziervogel K, Asper V, Diercks A. Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environmental Research Letters, 2012, 7(3):035301.
    [8] Tooby PF, Wick GL, Isaacs JD. The motion of a small sphere in a rotating velocity field:a possible mechanism for suspending particles in turbulence. Journal of Geophysical Research, 1977, 82(15):2096-2100.
    [9] Logan BE. Environmental transport processes. 2nd ed. New York:John Wiley & Sons, 2012.
    [10] Kiørboe T. Small-scale turbulence, marine snow formation, and planktivorous feeding. Scientia Marina, 1997, 61(S1):141-158.
    [11] Jackson GA. A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Research Part A. Oceanographic Research Papers, 1990, 37(8):1197-1211.
    [12] Kiørboe T, Andersen KP, Dam HG. Coagulation efficiency and aggregate formation in marine phytoplankton. Marine Biology, 1990, 107(2):235-245.
    [13] van Eenennaam JS, Wei YZ, Grolle KCF, Foekema EM, Murk AJ. Oil spill dispersants induce formation of marine snow by phytoplankton-associated bacteria. Marine Pollution Bulletin, 2016, 104(1/2):294-302.
    [14] Gutierrez T, Berry D, Yang TT, Mishamandani S, McKay L, Teske A, Aitken MD. Role of bacterial exopolysaccharides (EPS) in the fate of the oil released during the Deepwater Horizon Oil Spill. PLoS One, 2013, 8(6):e67717.
    [15] Metzger U, Lankes U, Fischpera K, Frimmel FH. The concentration of polysaccharides and proteins in EPS of Pseudomonas putida and Aureobasidum pullulans as revealed by 13C CPMAS NMR spectroscopy. Applied Microbiology and Biotechnology, 2009, 85(1):197-206.
    [16] Corzo A, Morillo JA, Rodríguez S. Production of transparent exopolymer particles (TEP) in cultures of Chaetoceros calcitrans under nitrogen limitation. Aquatic Microbial Ecology, 2000, 23(1):63-72.
    [17] de Jesus Raposo MF, de Morais RMSC, de Morais AMMB. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Marine Drugs, 2013, 11(1):233-252.
    [18] Arnosti C, Ziervogel K, Yang TT, Teske A. Oil-derived marine aggregates-hot spots of polysaccharide degradation by specialized bacterial communities. Deep Sea Research Part II:Topical Studies in Oceanography, 2016, 129:179-186.
    [19] Leppard GG. Colloidal organic fibrils of acid polysaccharides in surface waters:electron-optical characteristics, activities and chemical estimates of abundance. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1997, 120(1/3):1-15.
    [20] Chin WC, Orellana MV, Verdugo P. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature, 1998, 391(6667):568-572.
    [21] Verdugo P, Santschi PH. Polymer dynamics of DOC networks and gel formation in seawater. Deep Sea Research Part II:Topical Studies in Oceanography, 2010, 57(16):1486-1493.
    [22] Passow U, Alldredge AL, Logan BE. The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep Sea Research Part I:Oceanographic Research Papers, 1994, 41(2):335-357.
    [23] Yu GH, He PJ, Shao LM. Characteristics of extracellular polymeric substances (EPS) fractions from excess sludges and their effects on bioflocculability. Bioresource Technology, 2009, 100(13):3193-3198.
    [24] Shanks AL, Edmondson EW. Laboratory-made artificial marine snow:a biological model of the real thing. Marine Biology, 1989, 101(4):463-470.
    [25] Suja LD, Summers S, Gutierrez T. Role of EPS, Dispersant and nutrients on the microbial response and MOS formation in the Subarctic Northeast Atlantic. Frontiers in Microbiology, 2017, 8:676.
    [26] Passow U. Formation of rapidly-sinking, oil-associated marine snow. Deep Sea Research Part II:Topical Studies in Oceanography, 2016, 129:232-240.
    [27] Valentine DL, Kessler JD, Redmond MC, Mendes SD, Heintz MB, Farwell C, Hu L, Kinnaman FS, Yvon-Lewis S, Du MR, Chan EW, Tigreros FG, Villanueva CJ. Propane respiration jump-starts microbial response to a deep oil spill. Science, 2010, 330(6001):208-211.
    [28] McGenity TJ. Hydrocarbon biodegradation in intertidal wetland sediments. Current Opinion in Biotechnology, 2014, 27:46-54.
    [29] Quigg A, Passow U, Chin WC, Xu C, Doyle S, Bretherton L, Kamalanathan M, Williams AK, Sylvan JB, Finkel ZV, Knap AH, Schwehr KA, Zhang SJ, Sun LN, Wade TL, Obeid W, Hatcher PG, Santschi PH. The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnology and Oceanography Letters, 2016, 1(1):3-26.
    [30] Gong YY, Zhao X, O'Reilly SE, Qian TW, Zhao DY. Effects of oil dispersant and oil on sorption and desorption of phenanthrene with Gulf Coast marine sediments. Environmental Pollution, 2014, 185:240-249.
    [31] Thibodeaux LJ, Valsaraj KT, John VT, Papadopoulos KD, Pratt LR, Pesika NS. Marine oil fate:knowledge gaps, basic research, and development needs; a perspective based on the deepwater horizon spill. Environmental Engineering Science, 2011, 28(2):87-93.
    [32] Ramachandran SD, Hodson PV, Khan CW, Lee K. Oil dispersant increases PAH uptake by fish exposed to crude oil. Ecotoxicology And Environmental Safety, 2004, 59(3):300-308.
    [33] Cai ZQ, Gong YY, Liu W, Fu J, O'Reilly SE, Hao XD, Zhao DY. A surface tension based method for measuring oil dispersant concentration in seawater. Marine Pollution Bulletin, 2016, 109(1):49-54.
    [34] Kujawinski EB, Soule MCK, Valentine DL, Boysen AK, Longnecker K, Redmond MC. Fate of dispersants associated with the deepwater horizon oil spill. Environmental Science & Technology, 2011, 45(4):1298-1306.
    [35] Zhao X, Liu W, Fu J, Cai ZQ, O'Reilly SE, Zhao DY. Dispersion, sorption and photodegradation of petroleum hydrocarbons in dispersant-seawater-sediment systems. Marine Pollution Bulletin, 2016, 109(1):526-538.
    [36] Hemmer MJ, Barron MG, Greene RM. Comparative toxicity of eight oil dispersants, Louisiana sweet crude oil (LSC), and chemically dispersed LSC to two aquatic test species. Environmental Toxicology and Chemistry, 2011, 30(10):2244-2252.
    [37] Fu J, Gong YY, Cai ZQ, O'Reilly SE, Zhao DY. Mechanistic investigation into sunlight-facilitated photodegradation of pyrene in seawater with oil dispersants. Marine Pollution Bulletin, 2017, 114(2):751-758.
    [38] 刘迪. 分散剂作用下溢油乳化和生物降解效果研究. 青岛理工大学硕士学位论文, 2013.
    [39] Li ZK, Kepkay P, Lee K, King T, Boufadel MC, Venosa AD. Effects of chemical dispersants and mineral fines on crude oil dispersion in a wave tank under breaking waves. Marine Pollution Bulletin, 2007, 54(7):983-993.
    [40] Suja LD, Chen XD, Summers S, Paterson DM, Gutierrez T. Chemical dispersant enhances microbial exopolymer (EPS) production and formation of marine oil/dispersant snow in surface waters of the Subarctic Northeast Atlantic. Frontiers in Microbiology, 2019, 10:553.
    [41] 韩璐. 分散剂的投加对海洋石油雪形成及沉降特性的影响. 青岛理工大学硕士学位论文, 2018.
    [42] Chiu MH, Vazquez CI, Shiu RF, Le C, Sanchez NR, Kagiri A, Garcia CA, Nguyen CH, Tsai SM, Zhang SJ, Xu C, Santschi PH, Quigg A, Chin WC. Impact of exposure of crude oil and dispersant (Corexit) on aggregation of extracellular polymeric substances. Science of the Total Environment, 2019, 657:1535-1542.
    [43] Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML, Dittmar T, Passow U, Medeiros PM, Joye SB. Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(48):14900-14905.
    [44] 于洋. 分散剂及生物柴油对石油降解微生物多样性的影响研究. 青岛理工大学硕士学位论文, 2014.
    [45] 李会琳. 生物与化学分散剂对海洋石油降解微生物的影响. 西华师范大学硕士学位论文, 2019.
    [46] Hamdan LJ, Fulmer PA. Effects of COREXIT® EC9500A on bacteria from a beach oiled by the Deepwater Horizon spill. Aquatic Microbial Ecology, 2011, 63(2):101-109.
    [47] Baelum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R, Mason OU, Auer M, Zemla M, Bill M, Conrad ME, Malfatti SA, Tringe SG, Holman HY, Hazen TC, Jansson JK. Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environmental Microbiology, 2012, 14(9):2405-2416.
    [48] Gong YY, Fu J, O'Reilly SE, Zhao DY. Effects of oil dispersants on photodegradation of pyrene in marine water. Journal of Hazardous Materials, 2015, 287:142-150.
    [49] Plata DL, Sharpless CM, Reddy CM. Photochemical degradation of polycyclic aromatic hydrocarbons in oil films. Environmental Science & Technology, 2008, 42(7):2432-2438.
    [50] van Eenennaam JS, Rahsepar S, Radovic JR, Oldenburg TBP, Wonink J, Langenhoff AAM, Murk AJ, Foekema EM. Marine snow increases the adverse effects of oil on benthic invertebrates. Marine Pollution Bulletin, 2018, 126:339-348.
    [51] Passow U, Ziervogel K. Marine snow sedimented oil released during the deepwater horizon spill. Oceanography, 2016, 29(3):118-125.
    [52] Ziervogel K, McKay L, Rhodes B, Osburn CL, Dickson-Brown J, Arnosti C, Teske A. Microbial activities and dissolved organic matter dynamics in oil-contaminated surface seawater from the Deepwater Horizon Oil Spill site. PLoS One, 2012, 7(4):e34816.
    [53] Wirth MA, Passow U, Jeschek J, Hand I, Schulz-Bull DE. Partitioning of oil compounds into marine oil snow:insights into prevailing mechanisms and dispersant effects. Marine Chemistry, 2018, 206:62-73.
    [54] Wozniak AS, Prem PM, Obeid W, Waggoner DC, Quigg A, Xu C, Santschi PH, Schwehr KA, Hatcher PG. Rapid degradation of oil in mesocosm simulations of marine oil snow events. Environmental Science & Technology, 2019, 53(7):3441-3450.
    [55] Duran R, Cravo-Laureau C. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiology Reviews, 2016, 40(6):814-830.
    [56] Rodriguez-R LM, Overholt WA, Hagan C, Huettel M, Kostka JE, Konstantinidis KT. Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill. The ISME Journal, 2015, 9(9):1928-1940.
    [57] Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Bælum J, Kimbrel J, Bouskill NJ, Prestat E, Borglin S, Joyner DC, Fortney JL, Jurelevicius D, Stringfellow WT, Alvarez-Cohen L, Hazen TC, Knight R, Gilbert JA, Jansson JK. Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. The ISME Journal, 2014, 8(7):1464-1475.
    [58] Daly KL, Passow U, Chanton J, Hollande D. Assessing the impacts of oil-associated marine snow formation and sedimentation during and after the Deepwater Horizon oil spill. Anthropocene, 2016, 13:18-33.
    [59] Du YF, Gao S, Liu XS, Wang DD, Zhang LH, Ingels J. Meiofauna and nematode community characteristics indicate ecological changes induced by geomorphic evolution:a case study on tidal creek systems. Ecological Indicators, 2018, 87:97-106.
    [60] Shiells GM, Anderson KJ. Pollution monitoring using the nematode/copepod ratio A practical application. Marine Pollution Bulletin, 1985, 16(2):62-68.
    [61] Rohal M, Barrera N, Van Eenennaam JS, Foekema EM, Montagna PA, Murk AJ, Pryor M, Romero IC. The effects of experimental oil-contaminated marine snow on meiofauna in a microcosm. Marine Pollution Bulletin, 2020, 150:110656.
    [62] Kang T, Oh JH, Hong JS, Kim D. Responses of meiofauna and nematode communities to crude oil contamination in a laboratory microcosm experiment. Ocean Science Journal, 2016, 51(3):465-476.
    [63] Hastings DW, Schwing PT, Brooks GR, Larson RA, Morford JL, Roeder T, Quinn KA, Bartlett T, Romero IC, Hollander DJ. Changes in sediment redox conditions following the BP DWH blowout event. Deep Sea Research Part II:Topical Studies in Oceanography, 2016, 129:167-178.
    [64] Rahsepar S, Langenhoff AAM, Smit MPJ, Van Eenennaam JS, Murk AJ, Rijnaarts HHM. Oil biodegradation:interactions of artificial marine snow, clay particles, oil and Corexit. Marine Pollution Bulletin, 2017, 125(1/2):186-191.
    [65] Schwing PT, Romero IC, Brooks GR, Hastings DW, Larson RA, Hollander DJ. A decline in benthic foraminifera following the Deepwater Horizon Event in the Northeastern Gulf of Mexico. PLoS One, 2015, 10(3):e0120565.
    [66] Liu Y, Shi Q, Zhang YH, He YL, Chung KH, Zhao SQ, Xu CM. Characterization of red pine pyrolysis bio-oil by gas chromatography-mass spectrometry and negative-ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Energy & Fuels, 2012, 26(7):4532-4539.
    [67] Fisher CR, Hsing PY, Kaiser CL, Yoerger DR, Roberts HH, Shedd WW, Cordes EE, Shank TM, Berlet SP, Saunders MG, Larcom EA, Brooks JM. Footprint of Deepwater horizon blowout impact to deep-water coral communities. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(32):11744-11749.
    [68] DeLeo DM, Ruiz-Ramos DV, Baums IB, Cordes EE. Response of deep-water corals to oil and chemical dispersant exposure. Deep Sea Research Part II:Topical Studies in Oceanography, 2016, 129:137-147.
    [69] Murawski SA, Hogarth WT, Peebles EB, Barbeiri L. Prevalence of external skin lesions and polycyclic aromatic hydrocarbon concentrations in Gulf of Mexico fishes, post-Deepwater Horizon. Transactions of the American Fisheries Society, 2014, 143(4):1084-1097.
    [70] Snyder SM, Pulster EL, Wetzel DL, Murawski SA. PAH exposure in Gulf of Mexico demersal fishes, post-Deepwater horizon. Environmental Science & Technology, 2015, 49(14):8786-8795.
    [71] Lampitt RS, Wishner KF, Turley CM, Angel MV. Marine snow studies in the Northeast Atlantic Ocean:distribution, composition and role as a food source for migrating plankton. Marine Biology, 1993, 116(4):689-702.
    [72] Ziervogel K, Joye SB, Arnosti C. Microbial enzymatic activity and secondary production in sediments affected by the sedimentation pulse following the Deepwater Horizon oil spill. Deep Sea Research Part II:Topical Studies in Oceanography, 2016, 129:241-248.
    [73] Lasorsa BK, Gill GA, Horvat M. Analytical methods for measuring mercury in water, sediment and biota. Richland, WA:Pacific Northwest National Lab., 2012:27-54.
    [74] Parks JM, Johs A, Podar M, Bridou R, Hurt Jr RA, Smith SD, Tomanicek SJ, Qian Y, Brown SD, Brandt CC, Palumbo AV, Smith JC, Wall JD, Elias DA, Liang LY. The genetic basis for bacterial mercury methylation. Science, 2013, 339(6125):1332-1335.
    [75] Bridou R, Monperrus M, Gonzalez PR, Guyoneaud R, Amouroux D. Simultaneous determination of mercury methylation and demethylation capacities of various sulfate-reducing bacteria using species-specific isotopic tracers. Environmental Toxicology and Chemistry, 2011, 30(2):337-344.
    [76] Fujimura M, Usuki F. In situ different antioxidative systems contribute to the site-specific methylmercury neurotoxicity in mice. Toxicology, 2017, 392:55-63.
    [77] Joye SB, Teske AP, Kostka JE. Microbial dynamics following the Macondo oil well blowout across Gulf of Mexico environments. Bioscience, 2014, 64(9):766-777.
    [78] Kleindienst S, Paul JH, Joye SB. Using dispersants after oil spills:impacts on the composition and activity of microbial communities. Nature Reviews Microbiology, 2015, 13(6):388-396.
    [79] Kim S, Stanford LA, Rodgers RP, Marshall AG, Walters CC, Qian KN, Wenger LM, Mankiewicz P. Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry. Organic Geochemistry, 2005, 36(8):1117-1134.
    [80] Zhu W, Song Y, Adediran GA, Jiang T, Reis AT, Pereira E, Skyllberg U, Björn E. Mercury transformations in resuspended contaminated sediment controlled by redox conditions, chemical speciation and sources of organic matter. Geochimica et Cosmochimica Acta, 2018, 220:158-179.
    [81] Perrot V, Landing WM, Grubbs RD, Salters VJM. Mercury bioaccumulation in tilefish from the northeastern Gulf of Mexico 2 years after the Deepwater Horizon oil spill:insights from Hg, C, N and S stable isotopes. Science of the Total Environment, 2019, 666:828-838.
    [82] Wallschläger D, Desai MVM, Wilken RD. The role of humic substances in the aqueous mobilization of mercury from contaminated floodplain soils. Water, Air, and Soil Pollution, 1996, 90(3/4):507-520.
    [83] Driscoll CT, Blette V, Yan C, Schofield CL, Munson R, Holsapple J. The role of dissolved organic carbon in the chemistry and bioavailability of mercury in Remote Adirondack Lakes. Water, Air, and Soil Pollution, 1995, 80(1/4):499-508.
    [84] Ainsworth CH, Paris CB, Perlin N, Dornberger LN, Patterson III WF, Chancellor E, Murawski S, Hollander D, Daly K, Romero IC, Coleman F, Perryman H. Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model. PLoS One, 2018, 13(1):e0190840.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李雅卓,李章,张继彪,付杰. “海油雪”的形成机制及其生态效应[J]. 微生物学报, 2020, 60(9): 1893-1906

复制
分享
文章指标
  • 点击次数:419
  • 下载次数: 1284
  • HTML阅读次数: 2157
  • 引用次数: 0
历史
  • 收稿日期:2020-03-20
  • 最后修改日期:2020-05-16
  • 在线发布日期: 2020-09-16
文章二维码