蓝藻群体颗粒驱动元素地球化学循环研究进展
作者:
基金项目:

国家自然科学基金(91951104)


Biogeochemical cycling processes associated with cyanobacterial aggregates
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [160]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在天然淡水和半咸水水体中,水华蓝藻常以群体颗粒的形态存在。在蓝藻群体颗粒中聚集着大量异养细菌,和蓝藻共同构成了具有独特生态功能的基本单元。与蓝藻单体细胞相比,蓝藻群体颗粒呈现出许多独有的特性,如内部丰富的有机质、急剧的氧化还原梯度、密切的种间互作关系等等。这些特质使得蓝藻群体颗粒在水体中成为元素地球化学循环的反应热点。同时,在蓝藻群体颗粒中也存在着远比单细胞藻类-浮游细菌之间更为密切的种间互作。本综述围绕蓝藻群体颗粒的这些特点,结合当前的研究进展,重点阐述蓝藻群体颗粒中的生物、生理、化学过程,讨论其驱动宏观生态现象的微观机制。未来蓝藻群体颗粒组学研究和多组学微生态数据库的构建或成为探索蓝藻群体颗粒中生命过程及揭示蓝藻水华暴发机制的突破口之一。

    Abstract:

    In natural freshwater and low-salinity waters, bloom-forming cyanobacteria often live in the form of cyanobacterial aggregates. Many heterotrophic bacteria colonize in the cyanobacterial aggregates, subsequently they constitute the fundamental unit with unique ecological functions. Compared with single-celled cyanobacteria, cyanobacterial aggregates exhibit many unique characteristics, e.g., rich organic matter, steep redox gradient, and complex inter-specific interactions. These properties enable cyanobacterial aggregates to become the hotspot for elemental biogeochemical cycling in aquatic ecosystems. Meanwhile, the inter-specific interactions within cyanobacterial aggregates are far more intense compared to those between single-celled algae and free-living bacteria. This review introduces current research progress on these aspects, with a focus on the biological, physiological and chemical processes within cyanobacterial aggregates, and discusses the micro-mechanisms of the macro-phenomena. In the future, the omic research of cyanobacterial aggregates and the construction of multi-omic microecological databases may become the key for exploring life processes within cyanobacterial aggregates and for revealing the mechanisms of cyanobacterial bloom outbreak.

    参考文献
    [1] Schopf JW. The fossil record:tracing the roots of the cyanobacterial lineage//Whitton BA, Potts M. The Ecology of Cyanobacteria. Dordrecht:Springer, 2000:13-35.
    [2] Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. Cyanobacterial blooms. Nature Reviews Microbiology, 2018, 16(8):471-483.
    [3] D'Agostino PM, Woodhouse JN, Makower AK, Yeung ACY, Ongley SE, Micallef ML, Moffitt MC, Neilan BA. Advances in genomics, transcriptomics and proteomics of toxin-producing cyanobacteria. Environmental Microbiology Reports, 2016, 8(1):3-13.
    [4] Bullerjahn GS, McKay RM, Davis TW, Baker DB, Boyer GL, D'Anglada LV, Doucette GJ, Ho JC, Irwin EG, Kling CL, Kudela RM, Kurmayer R, Michalak AM, D.Ortiz J, Otten TG, Paerl HW, Qin BQ, Sohngen BL, Stumpf RP, Visser PM, Wilhelm SW. Global solutions to regional problems:collecting global expertise to address the problem of harmful cyanobacterial blooms. A lake erie case study. Harmful Algae, 2016, 54:223-238.
    [5] Paerl HW, Scott JT, McCarthy MJ, Newell SE, Gardner WS, Havens KE, Hoffman DK, Wilhelm SW, Wurtsbaugh WA. It takes two to tango:when and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems. Environmental Science & Technology, 2016, 50(20):10805-10813.
    [6] Gobler CJ, Burkholder JM, Davis TW, Harke MJ, Johengen T, Stow CA, van de waal DB. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae, 2016, 54:87-97.
    [7] Xu H, Paerl HW, Qin B, Zhu G, Hall N, Wu Y. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China. Environmental Science & Technology, 2015, 49(2):1051-1059.
    [8] Kosten S, Huszar VLM, Bécares E, Costa LS, Van Donk E, Hansson LA, Jeppesen E, Kruk C, Lacerot G, Mazzeo N, De Meester L, Moss B, Lürling M, Nõges T, Romo S, Scheffer M. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology, 2012, 18(1):118-126.
    [9] Michalak AM, Anderson EJ, Beletsky D, Boland S, Bosch NS, Bridgeman TB, Chaffin JD, Cho K, Confesor R, Daloğlu I, DePinto JV, Evans MA, Fahnenstiel GL, He LL, Ho JC, Jenkins L, Johengen TH, Kuo KC, LaPorte E, Liu XJ, McWilliams MR, Moore MR, Posselt DJ, Richards RP, Scavia D, Steiner AL, Verhamme E, Wright DM, Zagorski MA. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16):6448-6452.
    [10] Ullah H, Nagelkerken I, Goldenberg SU, Fordham DA. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biology, 2018, 16(1):e2003446.
    [11] Bell RT, Ahlgren GM, Ahlgren I. Estimating bacterioplankton production by measuring[3H]thymidine incorporation in a eutrophic swedish lake. Applied and Environmental Microbiology, 1983, 45(6):1709-1721.
    [12] Nausch M. Microbial activities on Trichodesmium colonies. Marine Ecology Progress Series, 1996, 141(1/3):173-181.
    [13] Brunberg AK. Contribution of bacteria in the mucilage of Microcystis spp. (cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiology Ecology, 1999, 29(1):13-22.
    [14] Xiao M, Li M, Reynolds CS. Colony formation in the cyanobacterium Microcystis. Biological Reviews, 2018, 93(3):1399-1420.
    [15] Sivonen K, Halinen K, Sihvonen L M, Koskenniemi K, Sinkko H, Rantasärkkä K, Moisander PH, Lyra C. Bacterial diversity and function in the Baltic Sea with an emphasis on cyanobacteria. AMBIO:A Journal of the Human Environment, 2007, 36(2):180-185.
    [16] Walsby AE, Hayes PK, Boje R, Stal LJ. The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytologist, 1997, 136(3):407-417.
    [17] Hajdu S, Höglander H, Larsson U. Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms. Harmful Algae, 2007, 6(2):189-205.
    [18] Paerl HW, Hall NS, Calandrino ES. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of The Total Environment, 2011, 409(10):1739-1745.
    [19] Ma JR, Brookes JD, Qin BQ, Paerl HW, Gao G, Wu P, Zhang W, Deng JM, Zhu GW, Zhang YL, Xu H, Niu HL. Environmental factors controlling colony formation in blooms of the cyanobacteria Microcystis spp. in Lake Taihu, China. Harmful Algae, 2014, 31:136-142.
    [20] Wu TF, Qin BQ, Ma JR, Yang Z, Yang GJ. Movement of cyanobacterial colonies in a large, shallow and eutrophic lake:a review. Chinese Science Bulletin, 2019, 64(36):3833-3843. (in Chinese) 吴挺峰, 秦伯强, 马健荣, 阳振, 杨桂军. 浅水富营养化湖泊中蓝藻群体运动研究述评. 科学通报, 2019, 64(36):3833-3843.
    [21] Qin BQ, Yang GJ, Ma JR, Deng JM, Li W, Wu TF, Liu LZ, Gao G, Zhu GW, Zhang YL. Dynamics of variability and mechanism of harmful cyanobacteria bloom in Lake Taihu, China. Chinese Science Bulletin, 2016, 61(7):759-770. (in Chinese) 秦伯强, 杨桂军, 马健荣, 邓建明, 李未, 吴挺峰, 刘丽贞, 高光, 朱广伟, 张运林. 太湖蓝藻水华"暴发"的动态特征及其机制. 科学通报, 2016, 61(7):759-770.
    [22] Zhang YS, Li HY, Kong FX, Yu Y, Zhang M. Role of conony intercellular space in the cyanobacteria bloom-forming. Environmental Science, 2011, 32(6):1602-1607. (in Chinese) 张永生, 李海英, 孔繁翔, 于洋, 张民. 群体细胞间空隙在微囊藻水华形成过程中的浮力调节作用. 环境科学, 2011, 32(6):1602-1607.
    [23] Zhang M, Shi XL, Yu Y, Kong FX. The acclimative changes in photochemistry after colony formation of the cyanobacteria Microcystis aeruginosa. Journal of Phycology, 2011, 47(3):524-532.
    [24] Sommaruga R, Chen YW, Liu ZW. Multiple strategies of bloom-forming Microcystis to minimize damage by solar ultraviolet radiation in surface waters. Microbial Ecology, 2009, 57(4):667-674.
    [25] Wu ZX, Gan NQ, Huang Q, Song L. Response of Microcystis to copper stress-Do phenotypes of Microcystis make a difference in stress tolerance? Environmental Pollution, 2007, 147(2):324-330.
    [26] Li M, Zhu W, Dai X, Li X. Effects of linear alkylbenzene sulfonate on extracellular polysaccharide content and cells per particle of Microcystis aeruginosa and Scenedesmus obliquus. Fresenius Environmental Bulletin, 2013, 22(4):1189-1194.
    [27] Yang Z, Kong FX, Shi XL, Zhang M, Xing P, Cao HS. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (cyanobacteria) during flagellate grazing. Journal of Phycology, 2008, 44(3):716-720.
    [28] Burkert U, Hyenstrand P, Drakare S, Blomqvist P. Effects of the mixotrophic flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. Aquatic Ecology, 2001, 35:11-17.
    [29] Jang MH, Ha KY, Joo GJ, Takamura N. Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwater Biology, 2003, 48(9):1540-1550.
    [30] Zhang J, Zhang WZ, Wang H, Chen J, Shen H. Progress in the relationships between microcystis and aquatic bacteria. Acta Hydrobiologica Sinica, 2019, 43(2):448-456. (in Chinese) 张佳, 张蔚珍, 王欢, 陈隽, 沈宏. 微囊藻与水体细菌相互关系的研究进展. 水生生物学报, 2019, 43(2):448-456.
    [31] Tang XM, Chao JY, Gong Y, Wang YP, Wilhelm S W, Gao G. Spatiotemporal dynamics of bacterial community composition in large shallow eutrophic Lake Taihu:high overlap between free-living and particle-attached assemblages. Limnology and Oceanography, 2017, 62(4):1366-1382.
    [32] Guedes IA, Rachid CTCC, Rangel LM, Silva LHS, Bisch PM, Azevedo SMFO, Pacheco ABF. Close link between harmful cyanobacterial dominance and associated bacterioplankton in a tropical eutrophic reservoir. Frontiers in Microbiology, 2018, 9:424.
    [33] Cai HY, Jiang HL, Krumholz LR, Yang Z. Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake. PLoS One, 2014, 9(8):e102879.
    [34] Te SH, Tan BF, Thompson JR, Gin KYH. Relationship of microbiota and cyanobacterial secondary metabolites in Planktothricoides-dominated bloom. Environmental Science & Technology, 2017, 51(8):4199-4209.
    [35] Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere:the ecological interface for phytoplankton-bacteria relationships. Nature Microbiology, 2017, 2(7):17065.
    [36] Louati I, Pascault N, Debroas D, Bernard C, Humbert JF, Leloup J. Structural diversity of bacterial communities associated with bloom-forming freshwater cyanobacteria differs according to the cyanobacterial genus. PLoS One, 2015, 10(11):e0140614.
    [37] Zhu CM, Zhang JY, Guan R, Hale L, Chen N, Li M, Lu ZH, Ge QY, Yang YF, Zhou JZ, Chen T. Alternate succession of aggregate-forming cyanobacterial genera correlated with their attached bacteria by co-pathways. Science of the Total Environment, 2019, 688:867-879.
    [38] Sison-Mangus MP, Jiang S, Kudela RM, Mehic S. Phytoplankton-associated bacterial community composition and succession during toxic diatom bloom and non-bloom events. Frontiers in Microbiology, 2016, 7:1433.
    [39] 张军毅. 太湖蓝藻水华的宏基因组学研究. 东南大学博士学位论文, 2018.
    [40] Shi LM, Cai YF, Yang HL, Xing P, Li PF, Kong LD, Kong FX. Phylogenetic diversity and specificity of bacteria associated with Microcystis aeruginosa and other cyanobacteria. Journal of Environmental Sciences, 2009, 21(11):1581-1590.
    [41] Shi LM, Cai YF, Wang XY, Li PF, Yu Y, Kong FX. Community structure of bacteria associated with Microcystis colonies from cyanobacterial blooms. Journal of Freshwater Ecology, 2010, 25(2):193-203.
    [42] Brasell KA, Heath MW, Ryan KG, Wood SA. Successional change in microbial communities of benthic Phormidium-dominated biofilms. Microbial Ecology, 2015, 69(2):254-266.
    [43] Zheng XH, Xiao L, Ren J, Yang LY. Variation of bacterial community composition in the outbreak and decline of Microcystis spp. bloom in Lake Xuanwu. Environmental Science, 2008, 29(10):2956-2962. (in Chinese) 郑小红, 肖琳, 任晶, 杨柳燕. 玄武湖微囊藻水华暴发及衰退期细菌群落变化分析. 环境科学, 2008, 29(10):2956-2962.
    [44] Zhu CM, Zhang JY, Nawaz MZ, Mahboob S, Al-Ghanim KA, Khan IA, Lu ZH, Chen T. Seasonal succession and spatial distribution of bacterial community structure in a eutrophic freshwater Lake, Lake Taihu. Science of the Total Environment, 2019, 669:29-40.
    [45] Song H, Xu JH, Lavoie M, Fan XJ, Liu GF, Sun LW, Fu ZW, Qian HF. Biological and chemical factors driving the temporal distribution of cyanobacteria and heterotrophic bacteria in a eutrophic lake (West Lake, China). Applied Microbiology and Biotechnology, 2017, 101(4):1685-1696.
    [46] Deng JM, Zhang W, Qin BQ, Zhang Y, Paerl HW, Salmaso N. Effects of climatically-modulated changes in solar radiation and wind speed on spring phytoplankton community dynamics in Lake Taihu, China. PLoS One, 2018, 13(10):e0205260.
    [47] Zhao DY, Shen F, Zeng J, Huang R, Yu ZB, Wu QL. Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton. Science of the Total Environment, 2016, 573:817-825.
    [48] Ren LJ, He D, Chen Z, Jeppesen E, Lauridsen TL, Søndergaard M, Liu ZW, Wu QL. Warming and nutrient enrichment in combination increase stochasticity and beta diversity of bacterioplankton assemblages across freshwater mesocosms. The ISME Journal, 2017, 11(3):613-625.
    [49] Celepli N, Sundh J, Ekman M, Dupont CL, Yooseph S, Bergman B, Ininbergs K. Meta-omic analyses of Baltic Sea cyanobacteria:diversity, community structure and salt acclimation. Environmental Microbiology, 2017, 19(2):673-686.
    [50] Berner C, Bertos-Fortis M, Pinhassi J, Legrand C. Response of microbial communities to changing climate conditions during summer cyanobacterial blooms in the Baltic Sea. Frontiers in Microbiology, 2018, 9:1562.
    [51] Bertos-Fortis M, Farnelid HM, Lindh MV, Casini M, Andersson A, Pinhassi J, Legrand C. Unscrambling cyanobacteria community dynamics related to environmental factors. Frontiers in Microbiology, 2016, 7:625.
    [52] Cook KV, Li C, Cai HY, Krumholz LR, Hambright KD, Paerl HW, Steffen MM, Wilson AE, Burford MA, Grossart HP, Hamilton DP, Jiang HL, Sukenik A, Latour D, Meyer EI, Padisák J, Qin BQ, Zamor RM, Zhu GW. The global Microcystis interactome. Limnology and Oceanography, 2020, 65(S1):S194-S207.
    [53] Li Q, Lin FB, Yang C, Wang JP, Lin Y, Shen MY, Park MS, Li T, Zhao JD. A large-scale comparative metagenomic study reveals the functional interactions in six bloom-forming Microcystis-epibiont communities. Frontiers in Microbiology, 2018, 9:746.
    [54] Eichner MJ, Klawonn I, Wilson ST, Littmann S, Whitehouse MJ, Church MJ, Kuypers MM, Karl DM, Ploug H. Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCO2. The ISME Journal, 2017, 11(6):1305-1317.
    [55] Eichner M, Thoms S, Rost B, Mohr W, Ahmerkamp S, Ploug H, Kuypers MMM, De Beer D. N2 fixation in free-floating filaments of Trichodesmium is higher than in transiently suboxic colony microenvironments. New Phytologist, 2019, 222(2):852-863.
    [56] Klawonn I, Bonaglia S, Brüchert V, Ploug H. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates. The ISME Journal, 2015, 9(6):1456-1466.
    [57] Ploug H, Adam B, Musat N, Kalvelage T, Lavik G, Wolf-Gladrow D, Kuypers MMM. Carbon, nitrogen and O2 fluxes associated with the cyanobacterium Nodularia spumigena in the Baltic Sea. The ISME Journal, 2011, 5(9):1549-1558.
    [58] Ploug H, Musat N, Adam B, Moraru CL, Lavik G, Vagner T, Bergman B, Kuypers MMM. Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea. The ISME Journal, 2010, 4(9):1215-1223.
    [59] Klawonn I, Eichner MJ, Wilson ST, Moradi N, Thamdrup B, Kümmel S, Gehre M, Khalili A, Grossart HP, Karl DM, Ploug H. Distinct nitrogen cycling and steep chemical gradients in Trichodesmium colonies. The ISME Journal, 2020, 14(2):399-412.
    [60] Yu GL, Li RH. Three newly recorded species of Microcystis (Cyanophyta) from China. Acta Phytotaxonomica Sinica, 2007, 45(3):353-358. (in Chinese) 虞功亮, 李仁辉. 中国淡水微囊藻三个新记录种. 植物分类学报, 2007, 45(3):353-358.
    [61] Zhang JY, Zhu BC, Wu ZJ, Xu T, Lu ZH. Microcystis panniformis-a newly recorded species of Microcystis in China. Journal of Lake Sciences, 2012, 24(4):647-650. (in Chinese) 张军毅, 朱冰川, 吴志坚, 许涛, 陆祖宏. 片状微囊藻(Microcystis panniformis)——中国微囊藻属的一个新记录种. 湖泊科学, 2012, 24(4):647-650.
    [62] Yu GL, Song LR, Li RH. Taxonomic notes on water bloom forming Microcystis species (Cyanophyta) from China-an example from samples of the Dianchi Lake. Acta Phytotaxonomica Sinica, 2007, 45(5):727-741. (in Chinese) 虞功亮, 宋立荣, 李仁辉. 中国淡水微囊藻属常见种类的分类学讨论——以滇池为例. 植物分类学报, 2007, 45(5):727-741.
    [63] Shi LM, Huang YX, Zhang M, Shi XL, Cai YF, Gao SL, Tang XM, Chen FZ, Lu YP, Kong FX. Large buoyant particles dominated by cyanobacterial colonies harbor distinct bacterial communities from small suspended particles and free-living bacteria in the water column. MicrobiologyOpen, 2018, 7(6):e00608.
    [64] Henderson RK, Baker A, Parsons SA, Jefferson B. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Research, 2008, 42(13):3435-3445.
    [65] Søndergaard M, Borch NH, Riemann B. Dynamics of biodegradable DOC produced by freshwater plankton communities. Aquatic Microbial Ecology, 2000, 23(1):73-83.
    [66] Ramanan R, Kang Z, Kim BH, Cho DH, Jin L, Oh HM, Kim HS. Phycosphere bacterial diversity in green algae reveals an apparent similarity across habitats. Algal Research, 2015, 8:140-144.
    [67] Robarts RD, Zohary T. Influence of cyanobacterial hyperscum on heterotrophic activity of planktonic bacteria in a hypertrophic lake. Applied and Environmental Microbiology, 1986, 51(3):609-613.
    [68] Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P. Complexity of cyanobacterial exopolysaccharides:composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiology Reviews, 2009, 33(5):917-941.
    [69] Yu X, Zhu YR, Wang HH, Tang Z, Gong BB, Tan WQ. Release of amino acids from Microcystis aeruginosa and its contributions to organic matter. Research of Environmental Sciences, 2016, 29(3):360-367. (in Cheinese)于茜, 朱元荣, 王焕华, 汤智, 宫蓓蓓, 谭伟强. 铜绿微囊藻培养过程中氨基酸的释放特征及其对水体有机质的贡献. 环境科学研究, 2016, 29(3):360-367.
    [70] Pivokonsky M, Safarikova J, Baresova M, Pivokonska L, Kopecka I. A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga. Water Research, 2014, 51:37-46.
    [71] Gonsior M, Powers LC, Williams E, Place A, Chen F, Ruf A, Hertkorn N, Schmitt-Kopplin P. The chemodiversity of algal dissolved organic matter from lysed Microcystis aeruginosa cells and its ability to form disinfection by-products during chlorination. Water Research, 2019, 155:300-309.
    [72] Jung JM, Lee J, Kim J, Kim KH, Kim HW, Jeon YJ, Kwon EE. Enhanced thermal destruction of toxic microalgal biomass by using CO2. Science of The Total Environment, 2016, 566-567:575-583.
    [73] Tonietto AE, Lombardi AT, Vieira AAH, Parrish CC, Choueri RB. Cylindrospermopsis raciborskii (Cyanobacteria) exudates:chemical characterization and complexation capacity for Cu, Zn, Cd and Pb. Water Research, 2014, 49:381-390.
    [74] Baran R, Brodie EL, Mayberry-Lewis J, Hummel E, Da Rocha UN, Chakraborty R, Bowen BP, Karaoz U, Cadillo-Quiroz H, Garcia-Pichel F, Northen TR. Exometabolite niche partitioning among sympatric soil bacteria. Nature Communications, 2015, 6(1):8289.
    [75] Nguyen ML, Westerhoff P, Baker L, Hu Q, Esparza-Soto M, Sommerfeld M. Characteristics and reactivity of algae-produced dissolved organic carbon. Journal of Environmental Engineering, 2005, 131(11):1574-1582.
    [76] Gonçalves AL, Pires JCM, Simões M. A review on the use of microalgal consortia for wastewater treatment. Algal Research, 2017, 24:403-415.
    [77] Moreno J, Vargas MA, Olivares H, Rivas J, Guerrero MG. Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. Journal of Biotechnology, 1998, 60(3):175-182.
    [78] Otero A, Vincenzini M. Nostoc (cyanophyceae) goes nude:extracellular polysaccharides serve as a sink for reducing power under unbalanced C/N metabolism. Journal of Phycology, 2004, 40(1):74-81.
    [79] Chen XC, Huang YY, Chen GQ, Li PP, Shen YS, Davis TW. The secretion of organics by living Microcystis under the dark/anoxic condition and its enhancing effect on nitrate removal. Chemosphere, 2018, 196:280-287.
    [80] Huang YY, Chen XC, Li PP, Chen GQ, Peng L, Pan LP. Pressurized Microcystis can help to remove nitrate from eutrophic water. Bioresource Technology, 2018, 248:140-155.
    [81] Paerl HW, Kellar PE. Significance of bacterial-Anabaena (cyanophyceae) associations with respect to N2 fixation in freshwater. Journal of Phycology, 1978, 14(3):254-260.
    [82] Casamatta DA, Wickstrom CE. Sensitivity of two disjunct bacterioplankton communities to exudates from the cyanobacterium Microcystis aeruginosa kützing. Microbial Ecology, 2000, 40(1):64-73.
    [83] Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiology and Molecular Biology Reviews, 2012, 76(3):667-684.
    [84] Amin SA, Hmelo LR, Van Tol HM, Durham BP, Carlson LT, Heal KR, Morales RL, Berthiaume CT, Parker MS, Djunaedi B, Ingalls AE, Parsek MR, Moran MA, Armbrust EV. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature, 2015, 522(7554):98-101.
    [85] Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ. Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(40):17071-17076.
    [86] Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature, 2005, 438(7064):90-93.
    [87] Kazamia E, Czesnick H, Van Nguyen TT, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environmental Microbiology, 2012, 14(6):1466-1476.
    [88] Tang YZ, Koch F, Gobler CJ. Most harmful algal bloom species are vitamin B1 and B12 auxotrophs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(48):20756-20761.
    [89] Lee MD, Walworth NG, McParland EL, Fu FX, Mincer TJ, Levine NM, Hutchins DA, Webb EA. The Trichodesmium consortium:conserved heterotrophic co-occurrence and genomic signatures of potential interactions. The ISME Journal, 2017, 11(8):1813-1824.
    [90] Beliaev AS, Romine MF, Serres M, Bernstein HC, Linggi BE, Markillie LM, Isern NG, Chrisler WB, Kucek LA, Hill EA, Pinchuk GE, Bryant DA, Wiley HS, Fredrickson JK, Konopka A. Inference of interactions in cyanobacterial-heterotrophic co-cultures via transcriptome sequencing. The ISME Journal, 2014, 8(11):2243-2255.
    [91] Xie ML, Ren ML, Yang C, Yi HS, Li Z, Li T, Zhao JD. Metagenomic analysis reveals symbiotic relationship among bacteria in Microcystis-dominated community. Frontiers in Microbiology, 2016, 7:56.
    [92] 任明磊. 利用基于高斯混合模型的分箱方法对微囊藻附生细菌群落的宏基因组学研究. 中国科学院大学博士学位论文, 2016.
    [93] Sher D, Thompson JW, Kashtan N, Croal L, Chisholm SW. Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. The ISME Journal, 2011, 5(7):1125-1132.
    [94] Bershova OI, Kopteva ZH, Tantsyurenko EV. The interrelations between blue-green algae-the causative agents of water "blooms"-and bacteria//Topachevsky A. Tsventenie Vody. Naukova Dunka, Kiev, Ukraine, 1968:159-171.
    [95] Le Chevanton M, Garnier M, Lukomska E, Schreiber N, Cadoret JP, Saint-Jean B, Bougaran G. Effects of nitrogen limitation on Dunaliella sp.-Alteromonas sp. interactions:from mutualistic to competitive relationships. Frontiers in Marine Science, 2016, 3:123.
    [96] Yuan LN, Zhu W, Xiao L, Yang LY. Phosphorus cycling between the colonial cyanobacterium Microcystis aeruginosa and attached bacteria, Pseudomonas. Aquatic Ecology, 2009, 43(4):859-866.
    [97] Imai I, Ishida Y, Hata Y. Killing of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal sea of Japan. Marine Biology, 1993, 116(4):527-532.
    [98] Gerphagnon M, Macarthur DJ, Latour D, Gachon CMM, Van Ogtrop F, Gleason FH, Sime-Ngando T. Microbial players involved in the decline of filamentous and colonial cyanobacterial blooms with a focus on fungal parasitism. Environmental Microbiology, 2015, 17(8):2573-2587.
    [99] Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers:features and functions of bacteria associated with phytoplankton blooms. Nature Reviews Microbiology, 2014, 12(10):686-698.
    [100] Diner RE, Schwenck SM, McCrow JP, Zheng H, Allen AE. Genetic manipulation of competition for nitrate between heterotrophic bacteria and diatoms. Frontiers in Microbiology, 2016, 7:880.
    [101] Jiang LJ, Yang LY, Xiao L, Shi XL, Gao G, Qin BQ. Quantitative studies on phosphorus transference occuring between Microcystis aeruginosa and its attached bacterium (Pseudomonas sp.). Hydrobiologia, 2007, 581:161-165.
    [102] Morris JJ, Lenski RE, Zinser ER. The black queen hypothesis:Evolution of dependencies through adaptive gene loss. mBio, 2012, 3(2):e00036-12.
    [103] Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, Kassabgy M, Huang SX, Mann AJ, Waldmann J, Weber M, Klindworth A, Otto A, Lange J, Bernhardt J, Reinsch C, Hecker M, Peplies J, Bockelmann FD, Callies U, Gerdts G, Wichels A, Wiltshire KH, Glöckner FO, Schweder T, Amann R. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science, 2012, 336(6081):608-611.
    [104] Teeling H, Fuchs BM, Bennke CM, Krüger K, Chafee M, Kappelmann L, Reintjes G, Waldmann J, Quast C, Glöckner FO, Lucas J, Wichels A, Gerdts G, Wiltshire KH, Amann RI. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife, 2016, 5:e11888.
    [105] Mayali X, Stewart B, Mabery S, Weber PK. Temporal succession in carbon incorporation from macromolecules by particle-attached bacteria in marine microcosms. Environmental Microbiology Reports, 2016, 8(1):68-75.
    [106] Mayali X. Editorial:metabolic interactions between bacteria and phytoplankton. Frontiers in Microbiology, 2018, 9:727.
    [107] Hudson JJ, Taylor WD, Schindler DW. Planktonic nutrient regeneration and cycling efficiency in temperate lakes. Nature, 1999, 400(6745):659-661.
    [108] Cottrell MT, Kirchman DL. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Applied and Environmental Microbiology, 2000, 66(4):1692-1697.
    [109] Grossart HP, Levold F, Allgaier M, Simon M, Brinkhoff T. Marine diatom species harbour distinct bacterial communities. Environmental Microbiology, 2005, 7(6):860-873.
    [110] Penn K, Wang J, Fernando SC, Thompson JR. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom. The ISME Journal, 2014, 8(9):1866-1878.
    [111] Cai HY, Zeng YH, Wang YN, Cui HL, Jiang HL. Flavobacterium cyanobacteriorum sp. nov., isolated from cyanobacterial aggregates in a eutrophic lake. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(4):1279-1284.
    [112] Cai HY, He WH, Yanan W, Yan ZS, Wang CH, Xu HC, Shao KQ. Flavobacterium aurantiibacter sp. nov., an orange-pigmented bacterium isolated from cyanobacterial aggregates in a eutrophic lake. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(6):1839-1844.
    [113] Berg KA, Lyra C, Sivonen K, Paulin L, Suomalainen S, Tuomi P, Rapala J. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. The ISME Journal, 2009, 3(3):314-325.
    [114] Bailey VL, Fansler SJ, Stegen JC, McCue LA. Linking microbial community structure to β-glucosidic function in soil aggregates. The ISME Journal, 2013, 7(10):2044-2053.
    [115] Kirchman DL. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiology Ecology, 2002, 39(2):91-100.
    [116] Rashidan KK, Bird DF. Role of predatory bacteria in the termination of a cyanobacterial bloom. Microbial Ecology, 2001, 41(2):97-105.
    [117] Steffen MM, Davis TW, McKay RML, Bullerjahn GS, Krausfeldt LE, Stough JMA, Neitzey ML, Gilbert NE, Boyer GL, Johengen TH, Gossiaux DC, Burtner AM, Palladino D, Rowe MD, Dick GJ, Meyer KA, Levy S, Boone BE, Stumpf RP, Wynne TT, Zimba PV, Gutierrez D, Wilhelm SW. Ecophysiological Examination of the Lake Erie Microcystis Bloom in 2014:linkages between biology and the water supply shutdown of Toledo, OH. Environmental Science & Technology, 2017, 51(12):6745-6755.
    [118] Liu FH, Lin GH, Gao G, Qin BQ, Zhang JS, Zhao GP, Zhao ZH, Shen JH. Bacterial and archaeal assemblages in sediments of a large shallow freshwater lake, Lake Taihu, as revealed by denaturing gradient gel electrophoresis. Journal of Applied Microbiology, 2009, 106(3):1022-1032.
    [119] Niemi RM, Heiskanen I, Heine R, Rapala J. Previously uncultured β-Proteobacteria dominate in biologically active granular activated carbon (BAC) filters. Water Research, 2009, 43(20):5075-5086.
    [120] Sanford RA, Cole JR, Tiedje JM. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Applied and Environmental Microbiology, 2002, 68(2):893-900.
    [121] Hoefman S, Van Der Ha D, Boon N, Vandamme P, De Vos P, Heylen K. Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit. BMC Microbiology, 2014, 14(1):83.
    [122] Miller TR, Hnilicka K, Dziedzic A, Desplats P, Belas R. Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products. Applied and Environmental Microbiology, 2004, 70(8):4692-4701.
    [123] Khan ST, Horiba Y, Yamamoto M, Hiraishi A. Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Applied and Environmental Microbiology, 2002, 68(7):3206-3214.
    [124] Zhu DC, Xie CX, Huang Y, Sun JZ, Zhang WM. Description of Comamonas serinivorans sp. nov., isolated from wheat straw compost. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(12):4141-4146.
    [125] Llirós M, Inceoğlu Ö, García-Armisen T, Anzil A, Leporcq B, Pigneur LM, Viroux L, Darchambeau F, Descy JP, Servais P. Bacterial community composition in three freshwater reservoirs of different alkalinity and trophic status. PLoS One, 2014, 9(12):e116145.
    [126] Zehr JP. Nitrogen fixation by marine cyanobacteria. Trends in Microbiology, 2011, 19(4):162-173.
    [127] 吴卫菊. 滇池水华束丝藻与微囊藻季节演替的生理生态学研究. 中国科学院研究生院博士学位论文, 2012.
    [128] Paerl H. The cyanobacterial nitrogen fixation paradox in natural waters. F1000Research, 2017, 6(6):244.
    [129] Chen ZZ, Zhang JY, Li R, Tian F, Shen YT, Xie XY, Ge QY, Lu ZH. Metatranscriptomics analysis of cyanobacterial aggregates during cyanobacterial bloom period in Lake Taihu, China. Environmental Science and Pollution Research, 2018, 25(5):4811-4825.
    [130] Finlay JC, Small GE, Sterner RW. Human influences on nitrogen removal in lakes. Science, 2013, 342(6155):247-250.
    [131] Liu ZY, Xu H, Zhan X, Zhu GW, Qin BQ, Zhang YL. Influence of cyanobacterial blooms on denitrification rate in shallow Lake Taihu, China. Environmental Science, 2019, 40(3):1261-1269. (in Chinese) 刘志迎, 许海, 詹旭, 朱广伟, 秦伯强, 张运林. 蓝藻水华对太湖水柱反硝化作用的影响. 环境科学, 2019, 40(3):1261-1269.
    [132] Chen XF, Yang LY, Xiao L, Miao AJ, Xi BD. Nitrogen removal by denitrification during cyanobacterial bloom in Lake Taihu. Journal of Freshwater Ecology, 2012, 27(2):243-258.
    [133] Peng YK, Liu L, Jiang LJ, Xiao L. The roles of cyanobacterial bloom in nitrogen removal. Science of the Total Environment, 2017, 609:297-303.
    [134] Peng YK, Lu JL, Chen HP, Xiao L. Dynamic changes of nitrogen-transforming and phosphorus-accumulating bacteria along with the formation of cyanobacterial blooms. Environmental Science, 2018, 39(11):4938-4945. (in Chinese) 彭宇科, 路俊玲, 陈慧萍, 肖琳. 蓝藻水华形成过程对氮磷转化功能细菌群的影响. 环境科学, 2018, 39(11):4938-4945.
    [135] Li J, Zhang SF, Xiao L. Effect of water bloom on the nitrogen transformation and the relevant bacteria. Environmental Science, 2016, 37(6):2164-2170. (in Chinese) 李洁, 张思凡, 肖琳. 微囊藻水华对水体中氮转化及微生物的影响. 环境科学, 2016, 37(6):2164-2170.
    [136] 左新宇. 微囊藻与硝化细菌相互关系的初步研究. 华中农业大学硕士学位论文, 2013.
    [137] Li JJ, Liu BJ, Xie H. Study on the relationship between microcystis and nitrifying bacteria in eutrophic lakes. Wuhan:China Association for Science and Technology, Hubei Association For Science and Technology, Chinese Society for Environmental Sciences, 2013. (in Chinese) 李晶晶, 刘伯娟, 谢宏. 富营养湖泊中微囊藻与硝化细菌相互关系研究//第三届中国湖泊论坛暨第七届湖北科技论坛论文集. 武汉:中国科协, 湖北省科协, 中国环境科学学会, 2013.
    [138] 江海洋. 藻华暴发中后期湖泊氮素、碳素循环研究. 扬州大学硕士学位论文, 2017.
    [139] Tuomainen JM, Hietanen S, Kuparinen J, Martikainen PJ, Servomaa K. Baltic Sea cyanobacterial bloom contains denitrification and nitrification genes, but has negligible denitrification activity. FEMS Microbiology Ecology, 2003, 45(2):83-96.
    [140] Lomas MW, Burke AL, Lomas DA, Bell DW, Shen C, Dyhrman ST, Ammerman JW. Sargasso Sea phosphorus biogeochemistry:an important role for dissolved organic phosphorus (DOP). Biogeosciences, 2010, 7(2):695-710.
    [141] Karl DM, Björkman KM, Dore JE, Fujieki L, Hebel DV, Houlihan T, Letelier R, Tupas LM. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep Sea Research Part II:Topical Studies in Oceanography, 2001, 48(8/9):1529-1566.
    [142] Thingstad TF, Krom MD, Mantoura RFC, Flaten GAF, Groom S, Herut B, Kress N, Law CS, Pasternak A, Pitta P, Psarra S, Rassoulzadegan F, Tanaka T, Tselepides A, Wassmann P, Woodward EMS, Riser CW, Zodiatis G, Zohary T. Nature of phosphorus limitation in the ultraoligotrophic Eastern Mediterranean. Science, 2005, 309(5737):1068-1071.
    [143] Van Mooy BAS, Rocap G, Fredricks HF, Evans CT, Devol AH. Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(23):8607-8612.
    [144] Dyhrman ST, Ammerman JW, Van Mooy BAS. Microbes and the marine phosphorus cycle. Oceanography, 2007, 20(2):110-116.
    [145] Moore LR, Ostrowski M, Scanlan DJ, Feren K, Sweetsir T. Ecotypic variation in phosphorus-acquisition mechanisms within marine picocyanobacteria. Aquatic Microbial Ecology, 2005, 39(3):257-269.
    [146] Dyhrman ST, Palenik B. Characterization of ectoenzyme activity and phosphate-regulated proteins in the coccolithophorid Emiliania huxleyi. Journal of Plankton Research, 2003, 25(10):1215-1225.
    [147] Dyhrman ST, Webb EA, Anderson DM, Moffett JW, Waterbury JB. Cell-specific detection of phosphorus stress in Trichodesmium from the Western North Atlantic. Limnology and Oceanography, 2002, 47(6):1832-1846.
    [148] Orchard ED, Webb EA, Dyhrman ST. Molecular analysis of the phosphorus starvation response in Trichodesmium spp.. Environmental Microbiology, 2009, 11(9):2400-2411.
    [149] Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Richter RA, Valas R, Novotny M, Yee-Greenbaum J, Selengut JD, Haft DH, Halpern AL, Lasken RS, Nealson K, Friedman R, Venter JC. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. The ISME Journal, 2012, 6(6):1186-1199.
    [150] Tripp HJ, Kitner JB, Schwalbach MS, Dacey JWH, Wilhelm LJ, Giovannoni SJ. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature, 2008, 452(7188):741-744.
    [151] Curson ARJ, Todd JD, Sullivan MJ, Johnston AWB. Catabolism of dimethylsulphoniopropionate:microorganisms, enzymes and genes. Nature Reviews Microbiology, 2011, 9(12):849-859.
    [152] Durham BP, Sharma S, Luo HW, Smith CB, Amin SA, Bender SJ, Dearth SP, Van Mooy BAS, Campagna SR, Kujawinski EB, Armbrust EV, Moran MA. Cryptic carbon and sulfur cycling between surface ocean plankton. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(2):453-457.
    [153] Zhang XH, Liu J, Liu JL, Zheng YF. Biosynthesis and cleavage of DMSP and their roles in global sulfur cycle. Bulletin of National Natural Science Foundation of China, 2018, 32(5):471-478. (in Chinese) 张晓华, 刘骥, 柳敬丽, 郑艳芬. DMSP的生物合成与裂解及其在硫循环中的作用. 中国科学基金, 2018, 32(5):471-478.
    [154] Moran MA, Durham BP. Sulfur metabolites in the pelagic ocean. Nature Reviews Microbiology, 2019, 17(11):665-678.
    [155] Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, Crump BC, Dorrestein PC, Dyhrman ST, Hess NJ, Howe B, Longnecker K, Medeiros PM, Niggemann J, Obernosterer I, Repeta DJ, Waldbauer JR. Deciphering ocean carbon in a changing world. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(12):3143-3151.
    [156] Gómez-Consarnau L, Sachdeva R, Gifford SM, Cutter LS, Fuhrman JA, Sañudo-Wilhelmy SA, Moran MA. Mosaic patterns of B-vitamin synthesis and utilization in a natural marine microbial community. Environmental Microbiology, 2018, 20(8):2809-2823.
    [157] Landa M, Burns AS, Durham BP, Esson K, Nowinski B, Sharma S, Vorobev A, Nielsen T, Kiene RP, Moran MA. Sulfur metabolites that facilitate oceanic phytoplankton-bacteria carbon flux. The ISME Journal, 2019, 13(10):2536-2550.
    [158] Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW. Bacterial vesicles in marine ecosystems. Science, 2014, 343(6167):183-186.
    [159] Lu X, Liu C, Yin HB, Fan CX. The main sulfur-containing odorous compounds and their forming mechanisms in waters during bio-induced black bloom. Journal of Lake Sciences, 2015, 27(4):583-590. (in Chinese) 卢信, 刘成, 尹洪斌, 范成新. 生源性湖泛水体主要含硫致臭物及其产生机制. 湖泊科学. 2015, 27(4):583-590.
    [160] Yang X, Xie P, Yu YZ, Shen H, Deng XW, Ma ZM, Wang PL, Tao M, Niu Y. Microcystis aeruginosa/Pseudomonas pseudoalcaligenes interaction effects on off-flavors in algae/bacteria co-culture system under different temperatures. Journal of Environmental Sciences, 2015, 31:38-43.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邓杰,陈雪初,黄莹莹,张军毅. 蓝藻群体颗粒驱动元素地球化学循环研究进展[J]. 微生物学报, 2020, 60(9): 1922-1940

复制
分享
文章指标
  • 点击次数:325
  • 下载次数: 1135
  • HTML阅读次数: 1855
  • 引用次数: 0
历史
  • 收稿日期:2020-03-30
  • 最后修改日期:2020-05-25
  • 在线发布日期: 2020-09-16
文章二维码