极端酸性矿山环境微生物基于CRISPR系统的适应性免疫机制
作者:
基金项目:

国家重点研发计划重点专项(2019YFC1803604);生物冶金教育部重点实验室开放基金(MOEKLB02);阳泉市水利局省级水利发展资金项目(2019046477);中国地质大学(武汉)实验技术研究项目(SJ-201903)


Adaptive immunity mechanisms of microorganisms in extreme acid mine environment based on CRISPR system
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 通过对酸性矿山环境中嗜酸硫杆菌属(Acidithiobacillus)、脱硫弧菌属(Desulfovibrio)、钩端螺旋菌属(Leptospirillum)、硫化杆菌属(Sulfobacillus)、酸原体属(Acidiplasma)和铁质菌属(Ferroplasma)的100株冶金微生物基因组中CRISPR-Cas系统的结构特征和同源关系进行生物信息学分析,在基因组水平上解析冶金微生物基于CRISPR系统对极端环境的适应性免疫机制。[方法] 从NCBI网站下载基因组序列,采用CRISPR Finder定位基因组中潜在的CRISPR簇。分析CRISPR系统的组成结构与功能:利用Clustal Omega对重复序列(repeat)分类;将间隔序列(spacer)分别与nr数据库、质粒数据库和病毒数据库比对,获得注释信息;根据Cas蛋白的种类和同源性对酸性矿山环境微生物的CRISPR-Cas系统分型。[结果] 在100株冶金微生物基因组中共鉴定出415个CRISPR簇,在176个cCRISPR簇中共有80种不同的重复序列和4147条间隔序列。对重复序列分类,发现12类重复序列均能形成典型的RNA二级结构,Cluster 10中的重复序列在冶金微生物中最具有代表性。间隔序列注释结果表明,这些微生物曾遭受来自细菌质粒与病毒的攻击,并通过不同的防御机制抵抗外源核酸序列的入侵。冶金微生物细菌的大部分CRISPR-Cas系统属于I-C和I-E亚类型,而古菌的CRISPR-Cas系统多为I-D亚类型,两者基于CRISPR-Cas系统的进化过程中存在显著差异。[结论] 酸性矿山环境微生物的CRISPR结构可能采用不同免疫机制介导外源核酸序列与Cas蛋白的相互作用,为进一步揭示极端环境微生物的适应性进化机理奠定了基础。

    Abstract:

    [Objective] To investigate the adaptive mechanism of bioleaching microorganisms to extreme environment based on CRISPR system at the genomic level, bioinformatic analyses were performed on the structural characteristics and homology of CRISPR-Cas system in genomes of 100 species from genera (Acidithiobacillus, Desulfovibrio, Leptospirillum, Sulfobacillus, Acidiplasma and Ferroplasma) in acid mine environment. [Methods] We downloaded genome sequences from NCBI website and identified potential CRISPR arrays by using CRISPR Finder. The composition, structure and function of each CRISPR system were analyzed, where repeats were classified by Clustal Omega and spacers were aligned and annotated according to nr database, plasmid database and viral database, respectively. The CRISPR-Cas system of microorganisms in acid mine environment was classified based on the types and homology of Cas proteins. [Results] Among the genomes of 100 bioleaching microorganisms, we found 415 CRISPR arrays. There were 80 different repeats and 4147 spacers in 176 confirmed CRISPR arrays. All the 12 types of repeat sequences in each cluster could form typical RNA secondary structure and the sequence of cluster 10 was the most representative one among all the bioleaching microorganisms. The annotation results showed that these microorganisms have been attacked by bacterial plasmids and virus, and have resisted the invasion of foreign nucleic acid sequences through different defense mechanisms. Most of the CRISPR-Cas systems of bioleaching bacteria belong to I-C and I-E subtypes, while most of the CRISPR-Cas systems of archaea belong to I-D subtype. There are significant differences between them in the evolution process based on the CRISPR-Cas system. [Conclusion] The CRISPR structure of acid mine environment microorganisms may mediate the interaction between foreign nucleic acid sequence and Cas protein based on different immune mechanisms, which provides a foundation for further revealing the adaptive evolution mechanism of extreme environment microorganisms.

    参考文献
    [1] Huang L, Feng XL, Du QS, Dong XZ, Liu SJ, Wen MZ, Dai X. Focusing on key scientific issues of microbiome research in hydrosphere:NSFC major research plan for microbes in hydrosphere. Bulletin of Chinese Academy of Sciences, 2017, 32(3):266-272. (in Chinese) 黄力, 冯雪莲, 杜全生, 东秀珠, 刘双江, 温明章, 戴欣. 水圈微生物重大研究计划:聚焦水圈微生物组研究的核心科学问题. 中国科学院院刊, 2017, 32(3):266-272.
    [2] Zhang X, Liu XD, Liang YL, Fan FL, Zhang XX, Yin HQ. Metabolic diversity and adaptive mechanisms of iron-and/or sulfur-oxidizing autotrophic acidophiles in extremely acidic environments. Environmental Microbiology Reports, 2016, 8(5):738-751.
    [3] Zhang X, Liu XD, Liang YL, Xiao YH, Ma LY, Guo X, Miao B, Liu HW, Peng DL, Huang WK, Yin HQ. Comparative genomics unravels the functional roles of co-occurring acidophilic bacteria in bioleaching heaps. Frontiers in Microbiology, 2017, 8:790.
    [4] Ma LY, Wang XJ, Liu XD, Wang SQ, Wang HM. Intensified bioleaching of chalcopyrite by communities with enriched ferrous or sulfur oxidizers. Bioresource Technology, 2018, 268:415-423.
    [5] Ma LY, Wang HM, Wu JJ, Wang YG, Zhang D, Liu XD. Metatranscriptomics reveals microbial adaptation and resistance to extreme environment coupling with bioleaching performance. Bioresource Technology, 2019, 280:9-17.
    [6] Fariq A, Blazier JC, Yasmin A, Gentry TJ, Deng YJ. Whole genome sequence analysis reveals high genetic variation of newly isolated Acidithiobacillus ferrooxidans IO-2C. Scientific Reports, 2019, 9(1):13049.
    [7] Goltsman DSA, Denef VJ, Singer SW, VerBerkmoes NC, Lefsrud M, Mueller RS, Dick GJ, Sun CL, Wheeler KE, Zemla A, Baker BJ, Hauser L, Land M, Shah MB, Thelen MP, Hettich RL, Banfield JF. Community genomic and proteomic analyses of chemoautotrophic iron-oxidizing "Leptospirillum rubarum" (Group II) and "Leptospirillum ferrodiazotrophum" (Group III) bacteria in acid mine drainage biofilms. Applied and Environmental Microbiology, 2009, 75(13):4599-4615.
    [8] Ferrer A, Bunk B, Spröer C, Biedendieck R, Valdés N, Jahn M, Jahn D, Orellana O, Levicán G. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. Group II strain CF-1. Journal of Biotechnology, 2016, 222:21-22.
    [9] Bulaev AG, Kanygina AV, Manolov AI. Genome analysis of Acidiplasma sp. MBA-1, a polyextremophilic archaeon predominant in the microbial community of a bioleaching reactor. Microbiology, 2017, 86(1):89-95.
    [10] Yelton AP, Comolli LR, Justice NB, Castelle C, Denef VJ, Thomas BC, Banfield JF. Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea. BMC Genomics, 2013, 14:485.
    [11] Faure G, Makarova KS, Koonin EV. CRISPR-Cas:complex functional networks and multiple roles beyond adaptive immunity. Journal of Molecular Biology, 2019, 431(1):3-20.
    [12] Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007, 8:172.
    [13] Li WJ, Tian Y. CRISPR/Cas-a new tool for molecular genetic research. Acta Microbiologica Sinica, 2017, 57(11):1653-1664. (in Chinese) 李文均, 田野. CRISPR/Cas工具——分子遗传研究的新刃. 微生物学报, 2017, 57(11):1653-1664.
    [14] Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819):1709-1712.
    [15] Kunin V, Sorek R, Hugenholtz P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biology, 2007, 8(4):R61.
    [16] Sorek R, Kunin V, Hugenholtz P. CRISPR-a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Reviews Microbiology, 2008, 6(3):181-186.
    [17] Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, van der Oost J, Koonin EV. Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 2011, 9(6):467-477.
    [18] Díez-Villaseñor C, Almendros C, García-Martínez J, Mojica FJM. Diversity of CRISPR loci in Escherichia coli. Microbiology, 2010, 156(5):1351-1361.
    [19] Li W, Liang HZ, Zhang DQ, Wang NN, Tang YR, Li BL, Huo GC. Detection of CRSPR-Cas system in Streptococcus thermophilus. Acta Microbiologica Sinica, 2016, 56(4):680-688. (in Chinese) 李婉, 梁宏彰, 张丹青, 王娜娜, 唐雅茹, 李柏良, 霍贵成. 嗜热链球菌CRISPR-Cas系统的检测. 微生物学报, 2016, 56(4):680-688.
    [20] Grissa I, Vergnaud G, Pourcel C. CRISPRFinder:a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Research, 2007, 35(S2):W52-W57.
    [21] Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li WZ, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 2011, 7:539.
    [22] Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo:a sequence logo generator. Genome Research, 2004, 14(6):1188-1190.
    [23] Mathews DH, Sabina J, Zuker M, Turner DH. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology, 1999, 288(5):911-940.
    [24] Biswas A, Gagnon JN, Brouns SJ, Fineran PC, Brown CM. CRISPRTarget:bioinformatic prediction and analysis of crRNA targets. RNA Biology, 2013, 10(5):817-827.
    [25] Fang J, Hou JL, Zhang Y, Wang FP, He Y. Distribution of CRISPR arrays in methanogenic archaea. Microbiology China, 2016, 43(11):2353-2365. (in Chinese) 方静, 侯佳林, 张宇, 王风平, 何莹. 产甲烷古菌中CRISPR簇的研究. 微生物学通报, 2016, 43(11):2353-2365.
    [26] Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M. Microbial diversity and metabolic networks in acid mine drainage habitats. Frontiers in Microbiology, 2015, 6:475.
    [27] Baker BJ, Banfield JF. Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 2003, 44(2):139-152.
    [28] Koonin EV, Wolf YI. Genomics of bacteria and archaea:the emerging dynamic view of the prokaryotic world. Nucleic Acids Research, 2008, 36(21):6688-6719.
    [29] Iwasaki T, Yamashita E, Nakagawa A, Enomoto A, Tomihara M, Takeda S. Three-dimensional structures of bacteriophage neck subunits are shared in Podoviridae, Siphoviridae and Myoviridae. Genes to Cells, 2018, 23(7):528-536.
    [30] Peng TJ, Ma LY, Feng X, Tao JM, Nan MH, Liu YD, Li JK, Shen L, Wu XL, Yu RL, Liu XD, Qiu GZ, Zeng WM. Genomic and transcriptomic analyses reveal adaptation mechanisms of an Acidithiobacillus ferrivorans strain YL15 to alpine acid mine drainage. PLoS One, 2017, 12(5):e0178008.
    [31] Xia K, Liang XL, Li YD. Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria. Hereditas, 2015, 37(12):1242-1250. (in Chinese) 夏凯, 梁新乐, 李余动. 醋酸菌中CRISPR位点的比较基因组学与进化分析. 遗传, 2015, 37(12):1242-1250.
    [32] Crispim JS, Dias RS, Vidigal PMP, de Sousa MP, da Silva CC, Santana MF, de Paula SO. Screening and characterization of prophages in Desulfovibrio genomes. Scientific Reports, 2018, 8(1):9273.
    [33] Guo X, Yin HQ, Liang YL, Hu Q, Zhou XS, Xiao YH, Ma LY, Zhang X, Qiu GZ, Liu XD. Comparative genome analysis reveals metabolic versatility and environmental adaptations of Sulfobacillus thermosulfidooxidans strain ST. PLoS One, 2014, 9(6):e99417.
    [34] Golyshina OV, Tran H, Reva ON, Lemak S, Yakunin AF, Goesmann A, Nechitaylo TY, LaCono V, Smedile F, Slesarev A, Rojo D, Barbas C, Ferrer M, Yakimov MM, Golyshin PN. Metabolic and evolutionary patterns in the extremely acidophilic archaeon Ferroplasma acidiphilum YT. Scientific Reports, 2017, 7(1):3682.
    [35] Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Computational Biology, 2005, 1(6):e60.
    [36] Zhang F, Zhang B, Xiang H, Hu SN. Comparative analysis of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) loci in the genomes of halophilic archaea. Acta Microbiologica Sinica, 2009, 49(11):1445-1453. (in Chinese) 张帆, 张兵, 向华, 胡松年. 极端嗜盐古菌中CRISPR结构的生物信息学分析. 微生物学报, 2009, 49(11):1445-1453.
    [37] Castro M, Moya-Beltrán A, Covarrubias PC, Gonzalez M, Cardenas JP, Issotta F, Nuñez H, Acuña LG, Encina G, Holmes DS, Johnson DB, Quatrini R. Draft genome sequence of the type strain of the sulfur-oxidizing acidophile, Acidithiobacillus albertensis (DSM 14366). Standards in Genomic Sciences, 2017, 12:77.
    [38] Zhang X, Liu XD, He Q, Dong WL, Zhang XX, Fan FL, Peng DL, Huang WK, Yin HQ. Gene turnover contributes to the evolutionary adaptation of Acidithiobacillus caldus:insights from comparative genomics. Frontiers in Microbiology, 2016, 7:1960.
    [39] Hedrich S, Johnson DB. Acidithiobacillus ferridurans sp. nov., an acidophilic iron-, sulfur-and hydrogen-metabolizing chemolithotrophic gammaproteobacterium. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(11):4018-4025.
    [40] Ccorahua-Santo R, Eca A, Abanto M, Guerra G, Ramírez P. Physiological and comparative genomic analysis of Acidithiobacillus ferrivorans PQ33 provides psychrotolerant fitness evidence for oxidation at low temperature. Research in Microbiology, 2017, 168(5):482-492.
    [41] Chen P, Yan L, Wu ZR, Xu RX, Li SY, Wang NB, Liang N, Li HY. Draft genome sequence of extremely acidophilic bacterium Acidithiobacillus ferrooxidans DLC-5 isolated from acid mine drainage in northeast China. Genomics Data, 2015, 6:267-268.
    [42] Zhang X, Feng X, Tao JM, Ma LY, Xiao YH, Liang YL, Liu XD, Yin HQ. Comparative genomics of the extreme acidophile Acidithiobacillus thiooxidans reveals intraspecific divergence and niche adaptation. International Journal of Molecular Sciences, 2016, 17(8):1355.
    [43] Quatrini R, Escudero LV, Moya-Beltrán A, Galleguillos PA, Issotta F, Acosta M, Cárdenas JP, Nuñez H, Salinas K, Holmes DS, Demergasso C. Draft genome sequence of Acidithiobacillus thiooxidans CLST isolated from the acidic hypersaline gorbea salt flat in northern Chile. Standards in Genomic Sciences, 2017, 12(1):84.
    [44] Abildgaard L, Nielsen MB, Kjeldsen KU, Ingvorsen K. Desulfovibrio alkalitolerans sp. nov., a novel alkalitolerant, sulphate-reducing bacterium isolated from district heating water. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(5):1019-1024.
    [45] Lobo SAL, Melo AMP, Carita JN, Teixeira M, Saraiva LM. The anaerobe Desulfovibrio desulfuricans ATCC 27774 grows at nearly atmospheric oxygen levels. FEBS Letters, 2007, 581(3):433-436.
    [46] Spring S, Sorokin DY, Verbarg S, Rohde M, Woyke T, Kyrpides NC. Sulfate-reducing bacteria that produce exopolymers thrive in the calcifying zone of a hypersaline cyanobacterial mat. Frontiers in Microbiology, 2019, 10:862.
    [47] Day LA, De León KB, Kempher ML, Zhou JZ, Wall JD. Complete genome sequence of Desulfovibrio desulfuricans IC1, a sulfonate-respiring anaerobe. Microbiology Resource Announcements, 2019, 8(31):e00456-19.
    [48] Brown SD, Gilmour CC, Kucken AM, Wall JD, Elias DA, Brandt CC, Podar M, Chertkov O, Held B, Bruce DC, Detter JC, Tapia R, Han CS, Goodwin LA, Cheng JF, Pitluck S, Woyke T, Mikhailova N, Ivanova NN, Han J, Lucas S, Lapidus AL, Land ML, Hauser LJ, Palumbo AV. Genome sequence of the mercury-methylating strain Desulfovibrio desulfuricans ND132. Journal of Bacteriology, 2011, 193(8):2078-2079.
    [49] Nakazawa H, Arakaki A, Narita-Yamada S, Yashiro I, Jinno K, Aoki N, Tsuruyama A, Okamura Y, Tanikawa S, Fujita N, Takeyama H, Matsunaga T. Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Research, 2009, 19(10):1801-1808.
    [50] Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou LW, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nature Biotechnology, 2004, 22(5):554-559.
    [51] Justice NB, Norman A, Brown CT, Singh A, Thomas BC, Banfield JF. Comparison of environmental and isolate Sulfobacillus genomes reveals diverse carbon, sulfur, nitrogen, and hydrogen metabolisms. BMC Genomics, 2014, 15:1107.
    [52] Zhang X, Liu XD, Liang YL, Guo X, Xiao YH, Ma LY, Miao B, Liu HW, Peng DL, Huang WK, Zhang YG, Yin HQ. Adaptive evolution of extreme acidophile Sulfobacillus thermosulfidooxidans potentially driven by horizontal gene transfer and gene loss. Applied and Environmental Microbiology, 2017, 83(7):e03098-16.
    [53] Golyshina OV, Yakimov MM, Lünsdorf H, Ferrer M, Nimtz M, Timmis KN, Wray V, Tindall BJ, Golyshin PN. Acidiplasma aeolicum gen. nov., sp. nov., a euryarchaeon of the family Ferroplasmaceae isolated from a hydrothermal pool, and transfer of Ferroplasma cupricumulans to Acidiplasma cupricumulans comb. nov. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(11):2815-2823.
    [54] Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL. Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Applied and Environmental Microbiology, 2004, 70(4):2079-2088.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄珊珊,马丽媛,王红梅,刘学端. 极端酸性矿山环境微生物基于CRISPR系统的适应性免疫机制[J]. 微生物学报, 2020, 60(9): 1985-1998

复制
分享
文章指标
  • 点击次数:432
  • 下载次数: 1465
  • HTML阅读次数: 2065
  • 引用次数: 0
历史
  • 收稿日期:2020-01-21
  • 最后修改日期:2020-03-19
  • 在线发布日期: 2020-09-16
文章二维码