细菌与古菌之间的直接电子传递
作者:
基金项目:

科技部国家重点研发计划项目(2018YFA0901303);国家自然科学基金项目(91851211,41772363);湖北省百人计划项目和中国地质大学(武汉)中央高校基本科研业务费专项资金


Direct electron transfer between bacteria and archaea
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    微生物种间直接电子传递是指在厌氧条件下,一种微生物将电子直接传递给另外一种微生物,将两种不同微生物的代谢途径耦合在一起,以达到互养共生的目的。细菌-古菌之间的直接电子传递是其物质转换与能量代谢的新途径和新调控机制,直接参与甲烷的合成以及与硫酸盐还原耦合的厌氧甲烷氧化,在驱动碳和硫的地球化学转化与循环中起着十分重要的作用。目前研究结果认为细菌-古菌之间的直接电子传递主要是由含多个血红素的C型细胞色素介导的,这些细胞色素能形成不间断的胞外电子传递途径,以电子多步跃迁机制在细菌和古菌的细胞质膜之间传递电子。

    Abstract:

    Under anoxic condition, a microorganism can transfer electrons directly to another microorganism (i.e., direct interspecies electron transfer or DIET) to couple the metabolic capability of the two microorganisms for their syntrophic growth. DIET between bacteria and archaea is the new way for energy exchange between bacteria and archaea as well as the new mechanisms for regulating their metabolisms. Furthermore, DIET between bacteria and archaea is directly involved in methane formation and the anoxic methane oxidation coupled to sulfate reduction. Thus, DIET between bacteria and archaea plays a crucial role in global biogeochemical transformation and cycling of carbon and sulfur. Finally, all currently available data suggest that multi-heme c-type cytochromes may form continuously extracellular electron transfer pathways to mediate electron transfer between the cytoplasmic membranes of bacteria and archaea via the multi-step hopping mechanism.

    参考文献
    [1] Klitgord N, Segre D. Environments that induce synthetic microbial ecosystems. PLoS Computational Biology, 2010, 6(11):e1001002.
    [2] Holmes DE, Shrestha PM, Walker DJF, Dang Y, Nevin KP, Woodard TL, Lovley DR. Metatranscriptomic evidence for direct interspecies electron transfer between Geobacter and Methanothrix species in methanogenic rice paddy soils. Applied and Environmental Microbiology, 2017, 83(9):e00223-17.
    [3] Kato S, Hashimoto K, Watanabe K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environmental Microbiology, 2012, 14(7):1646-1654.
    [4] McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature, 2015, 526(7574):531-535.
    [5] Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature, 2015, 526(7574):587-590.
    [6] Jiang YG, Shi MM, Shi L. Molecular underpinnings for microbial extracellular electron transfer during biogeochemical cycling of earth elements. Science China Life Sciences, 2019, 62(10):1275-1286.
    [7] Shi L, Dong HL, Reguera G, Beyenal H, Lu AH, Liu J, Yu HQ, Fredrickson JK. Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology, 2016, 14(10):651-662.
    [8] Shi MM, Jiang YG, Shi L. Electromicrobiology and biotechnological applications of the exoelectrogens Geobacter and Shewanella spp.. SCIENCE CHINA Life Sciences, 2019, 62(10):1670-1678.
    [9] Lovley DR. Syntrophy goes electric:direct interspecies electron transfer. Annual Review of Microbiology, 2017, 71(1):643-664.
    [10] Lovley DR. Happy together:microbial communities that hook up to swap electrons.The ISME Journal, 2017, 11(2):327-336.
    [11] Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP. Geobacter: the microbe electric's physiology, ecology, and practical applications. Advances in Microbial Physiology, 2011, 59:1-100.
    [12] Qiu X, Shi L. Electrical interplay between microorganisms and iron-bearing minerals. Acta Chimica Sinica, 2017, 75(6):583-593. (in Chinese) 邱轩, 石良. 微生物和含铁矿物之间的电子交换. 化学学报, 2017, 75(6):583-593.
    [13] Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. Extracellular electron transfer via microbial nanowires. Nature, 2005, 435(7045):1098-1101.
    [14] Wang FB, Gu YQ, O'Brien JP, Yi SM, Yalcin SE, Srikanth V, Shen C, Vu D, Ing NL, Hochbaum AI, Egelman EH, Malvankar NS. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell, 2019, 177(2):361-369.e10.
    [15] Filman DJ, Marino SF, Ward JE, Yang L, Mester Z, Bullitt E, Lovley DR, Strauss M. Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire. Communication Biology, 2019, 2:219.
    [16] Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science, 2010, 330(6009):1413-1415.
    [17] Liu X, Zhuo SY, Rensing C, Zhou SG. Syntrophic growth with direct interspecies electron transfer between pili-free Geobacter species. The ISME Journal, 2018, 12(9):2142-2151.
    [18] Ha PT, Lindemann SR, Shi L, Dohnalkova AC, Fredrickson JK, Madigan MT, Beyenal H. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nature Communications, 2017, 8(1):13924.
    [19] Rotaru AE, Shrestha PM, Liu FH, Markovaite B, Chen SS, Nevin KP, Lovley DR. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Applied and Environmental Microbiology, 2014, 80(15):4599-4605.
    [20] Rotaru AE, Shrestha PM, Liu FH, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR. A new model for electron flow during anaerobic digestion:direct interspecies electron transfer to Methanosaeta for the reduction of carbon dixide to methane. Energy and Environmental Science, 2014, 7(1):408-415.
    [21] Chen SS, Rotaru AE, Liu FH, Philips J, Woodard TL, Nevin KP, Lovley DR. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresource Technology, 2014, 173:82-86.
    [22] Chen SS, Rotaru AE, Shrestha PM, Malvankar NS, Liu FH, Fan W, Nevin KP, Lovley DR. Promoting interspecies electron transfer with biochar. Scientific Reports, 2014, 4:5019.
    [23] Liu FH, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR. Promoting direct interspecies electron transfer with activated carbon. Energy and Environmental Science, 2012, 5(10):8982-8989.
    [24] Liu FH, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environmental Microbiology, 2015, 17(3):648-655.
    [25] Kato S, Hashimoto K, Watanabe K. Microbial interspecies electron transfer via electric currents through conductive minerals. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(25):10042-10046.
    [26] Rotaru AE, Calabrese F, Stryhanyuk H, Musat F, Shrestha PM, Weber HS, Snoeyenbos-West OLO, Hall POJ, Richnow HH, Musat N, Thamdrup B. Conductive particles enable syntrophic acetate oxidation between Geobacter and Methanosarcina from coastal sediments. mBio, 2018, 9(3):e00226-18.
    [27] Zheng SL, Zhang HX, Li Y, Zhang H, Wang OM, Zhang J, Liu FH. Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iron (III)-reducing enrichment culture. Frontiers in Microbiology, 2015, 6:941.
    [28] Bond DR, Lovley DR. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environmental Microbiology, 2002, 4(2):115-124.
    [29] Liu D, Dong HL, Bishop ME, Wang HM, Agrawal A, Tritschler S, Eberl DD, Xie SC. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochimica et Cosmochimica Acta, 2011, 75(4):1057-1071.
    [30] Zhang J, Dong HL, Liu D, Agrawal A. Microbial reduction of Fe(III) in smectitte minerals by thermiphilic methanogen Methanothermobacter thermautotrophicus. Geochimica et Cosmochimica Acta, 2013, 106:203-315.
    [31] Zhang J, Dong HL, Liu D, Fischer TB, Wang S, Huang LQ. Microbial reduction of Fe(III) in illite-smectite minerals by methanogen Methanosarcina mazei. Chemical Geology, 2012, 292-293:35-44.
    [32] Soo VWC, McAnulty MJ, Tripathi A, Zhu FY, Zhang LM, Hatzakis E, Smith PB, Agrawal S, Nazem-Bokaee H, Gopalakrishnan S, Salis HM, Ferry JG, Maranas CD, Patterson AD, Wood TK. Reversing methanogenesis to capture methane for liquid biofuel precursors. Microbial Cell Factories, 2016, 15(1):11.
    [33] Yan Z, Joshi P, Gorski CA, Ferry JG. A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration. Nature Communications, 2018, 9(1):1642.
    [34] Holmes DE, Ueki T, Tang HY, Zhou JJ, Smith JA, Chaput G, Lovley DR. A membrane-bound cytochrome enables Methanosarcina acetivorans to conserve energy from extracellular electron transfer. mBio, 2019, 10(4):e00789-19.
    [35] Beal EJ, House CH, Orphan VJ. Manganese-and iron-dependent marine methane oxidation. Science, 2009, 325(5937):184-187.
    [36] Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science, 2016, 351(6274):703-707.
    [37] Ettwig KF, Zhu BL, Speth D, Keltjens JT, Jetten MSM, Kartal B. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45):12792-12796.
    [38] Cai C, Leu AO, Xie GJ, Guo JH, Feng YX, Zhao JX, Tyson GW, Yuan ZG, Hu SH. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. The ISME Journal, 2018, 12(8):1929-1939.
    [39] Leu AO, Cai C, McIlroy SJ, Southam G, Orphan VJ, Yuan ZG, Hu SH, Tyson GW. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. The ISME Journal, 2020, 14(4):1030-1041.
    [40] Skennerton CT, Chourey K, Iyer R, Hettich RL, Tyson GW, Orphan VJ. Methane-fueled syntrophy through extracellular electron transfer:uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea. mBio, 2017, 8(4):e00530-17.
    相似文献
    引证文献
引用本文

钟雯,蒋永光,石良. 细菌与古菌之间的直接电子传递[J]. 微生物学报, 2020, 60(9): 2030-2038

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-01
  • 最后修改日期:2020-04-17
  • 在线发布日期: 2020-09-16
文章二维码