大豆快生根瘤菌SMH12效应蛋白NopP在共生固氮过程中的功能
作者:
基金项目:

国家重点研发计划(2019YFA09004700,2018YFD0201006);国家自然科学基金(31670243);华中农业大学科技创新基金(2662017PY052,2662017PY121)


Functional characterization of a T3SS effector protein NopP of Sinorhizobium fredii SMH12 in the symbiotic nitrogen fixation and interaction with soybean
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 研究Sinorhizobium fredii SMH12中的nopP在共生固氮过程中的功能,为深入解析根瘤菌效应蛋白的菌植互作机理提供线索,进而为大豆高效根瘤菌的遗传改良提供一定的科学依据。[方法] 利用生物信息学分析nopP的结构特征,构建nopP缺失、过表达和互补菌株,并对其进行共生表型分析;通过qRT-PCR分析nopP在共生过程中的时空表达特征,测定在接野生型和突变体的冀豆17中NINENOD40PR1PR2PR5的表达量;采用激光共聚焦显微镜观察NopP的亚细胞定位。[结果] 根瘤菌的NopP不包含任何已知功能域,与病原体的任何Avr效应物没有同源性。nopP缺失之后对冀豆17和中黄13的根瘤固氮酶活均有显著影响,在瘤数上对冀豆17有显著增加,表明nopP突变后促进其与冀豆17和中黄13的共生固氮。qRT-PCR显示,nopP在自生条件下少量表达,在共生条件下表达量显著升高,尤其在接菌2 d后表达量达到最高,显示该基因可能与根瘤菌早期侵染相关。此外,发现NopP在烟草叶片和大豆根中均定位于细胞膜和细胞核。接种突变体的冀豆17根中NIN的表达量升高1.2倍,PR5的表达量降低3.6倍。[结论] 效应蛋白NopP在与大豆共生过程中,参与根瘤菌的早期侵染以及在根瘤菌与豆科宿主植物之间的免疫防御反应中发挥重要功能。

    Abstract:

    [Objective] To understand the molecular mechanism of the effector nopP in the nodulation and nitrogen fixation of Sinorhizobium fredii SMH12, and to provide foundation for effective genetic improvement of rhizobium-soybean symbiosis, we studied the function of nopP in symbiotic nitrogen fixation between S. fredii SMH12 and soybean. [Methods] The phylogenetics of the NopP was analyzed by bioinformatics, and the deletion mutant (ΔnopP), overexpression (OE-nopP) and complementation strains (CM-nopP) were constructed by genetic operation. We further analyzed the symbiotic phenotypes. Meanwhile, the expression pattern of nopP under free-living and symbiotic conditions and the expression of NIN, ENOD40, PR1, PR2 and PR5 in ΔnopP mutant in roots of Glycine max cv. JD17 inoculated with SMH12 and SMH12 ΔnopP were detected by quantitative real-time PCR (qRT-PCR). The subcellular localization of NopP was observed by laser confocal microscopy. [Results] The NopP protein of S. fredii SMH12 does not contain any functional domains and has no homologues with Avr effectors in the genome of several pathogens. Deletion of nopP in SMH12 significantly increased the nitrogen fixation activity of JD 17 and Zhong Huang 13 compared with the wild type strain SMH12, and the nodule number significantly increased in JD17 inoculated with the mutant ΔnopP. It is indicated that the deletion of nopP promoted the symbiotic nitrogen fixation with JD17 or Zhong Huang 13. qRT-PCR showed that the expression level of nopP under symbiosis was significantly up-regulated compared to that under free-living condition, and the nopP was highly expressed at a 2-day post inoculation (dpi), indicating that the nopP gene plays important role in the rhizobia early infection and the symbiotic nitrogen fixation. In addition, the NopP protein localizes at the cytoplasm membrane and nucleus in both tobacco leaves and soybean roots. Moreover, the expression of NIN in the roots of JD17 inoculated with the mutant ΔnopP was up-regulated by 1.2 times, whereas the expression level of PR5 was down-regulated by 3.6 times compared to the wild-type SMH12 inoculation. [Conclusion] The effector protein NopP of SMH12 plays important roles in the early infection of rhizobia and the defense response regulation in soybean under symbiosis.

    参考文献
    [1] Deakin WJ, Broughton WJ. Symbiotic use of pathogenic strategies:rhizobial protein secretion systems. Nature Reviews Microbiology, 2009, 7(4):312-320.
    [2] Zamioudis C, Pieterse CMJ. Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions, 2012, 25(2):139-150.
    [3] Alfano JR, Collmer A. Type III secretion system effector proteins:double agents in bacterial disease and plant defense. Annual Review of Phytopathology, 2004, 42:385-414.
    [4] Jones JDG, Dangl JL. The plant immune system. Nature, 2006, 444(7117):323-329.
    [5] Boller T, Felix G. A renaissance of elicitors:perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 2009, 60:379-406.
    [6] Tsuda K, Katagiri F. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology, 2010, 13(4):459-465.
    [7] Staehelin C, Krishnan HB. Nodulation outer proteins:double-edged swords of symbiotic rhizobia. Biochemical Journal, 2015, 470(3):263-274.
    [8] Kimbrel JA, Thomas WJ, Jiang Y, Creason AL, Thireault CA, Sachs JL, Chang JH. Mutualistic co-evolution of type III effector genes in Sinorhizobium fredii and Bradyrhizobium japonicum. PLoS Pathogens, 2013, 9(2):e1003204.
    [9] Okazaki S, Kaneko T, Sato S, Saeki K. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(42):17131-17136.
    [10] Bartsev AV, Boukli NM, Deakin WJ, Staehelin C, Broughton WJ. Purification and phosphorylation of the effector protein NopL from Rhizobium sp. NGR234. FEBS Letters, 2003, 554(3):271-274.
    [11] Zhang L, Chen XJ, Lu HB, Xie ZP, Staehelin C. Functional analysis of the type 3 effector nodulation outer protein L (NopL) from Rhizobium sp. NGR234:symbiotic effects, phosphorylation, and interference with mitogen-activated protein kinase signaling. The Journal of Biological Chemistry, 2011, 286(37):32178-32187.
    [12] Jiménez-Guerrero I, Pérez-Montaño F, Medina C, Ollero FJ, López-Baena FJ. NopC is a Rhizobium-specific type 3 secretion system effector secreted by Sinorhizobium (Ensifer) fredii HH103. PLoS One, 2015, 10(11):e0142866.
    [13] Skorpil P, Saad MM, Boukli NM, Kobayashi H, Ares-Orpel F, Broughton WJ, Deakin WJ. NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Molecular Microbiology, 2005, 57(5):1304-1317.
    [14] López-Baena FJ, Monreal JA, Pérez-Montaño F, Guasch-Vidal B, Bellogín RA, Vinardell JM, Ollero FJ. The absence of Nops secretion in Sinorhizobium fredii HH103 increases GmPR1 expression in Williams soybean. Molecular Plant-Microbe Interactions, 2009, 22(11):1445-1454.
    [15] Gassmann W, Bhattacharjee S. Effector-triggered immunity signaling:from gene-for-gene pathways to protein-protein interaction networks. Molecular Plant-Microbe Interactions, 2012, 25(7):862-868.
    [16] Kourelis J, Van Der Hoorn RAL. Defended to the nines:25 years of resistance gene cloning identifies nine mechanisms for R protein function. The Plant Cell, 2018, 30(2):285-299.
    [17] Sugawara M, Takahashi S, Umehara Y, Iwano H, Tsurumaru H, Odake H, Suzuki Y, Kondo H, Konno Y, Yamakawa T, Sato S, Mitsui H, Minamisawa K. Variation in bradyrhizobial NopP effector determines symbiotic incompatibility with Rj2-soybeans via effector-triggered immunity. Nature Communications, 2018, 9:3139.
    [18] Rodrı́guez-Navarro DN, Bellogı́n R, Camacho M, Daza A, Medina C, Ollero FJ, Santamarı́a C, Ruı́z-Saı́nz JE, Vinardell JM, Temprano FJ. Field assessment and genetic stability of Sinorhizobium fredii strain SMH12 for commercial soybean inoculants. European Journal of Agronomy, 2003, 19(2):299-309.
    [19] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2∆∆CT method. Methods, 2001, 25(4):402-408.
    [20] Marx CJ, Lidstrom ME. Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. BioTechniques, 2002, 33(5):1062-1067.
    [21] Schechter LM, Guenther J, Olcay EA, Jang S, Krishnan HB. Translocation of NopP by Sinorhizobium fredii USDA257 into Vigna unguiculata root nodules. Applied and Environmental Microbiology, 2010, 76(11):3758-3761.
    [22] Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R. High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Molecular Microbiology, 1999, 32(2):415-425.
    [23] Zehner S, Schober G, Wenzel M, Lang K, Göttfert M. Expression of the Bradyrhizobium japonicum type III secretion system in legume nodules and analysis of the associated tts box promoter. Molecular Plant-Microbe Interactions, 2008, 21(8):1087-1093.
    [24] Krishnan HB. NolX of Sinorhizobium fredii USDA257, a type III-secreted protein involved in host range determination, is localized in the infection threads of cowpea (Vigna unguiculata[L.] Walp) and soybean (Glycine max[L.] Merr.) nodules. Journal of Bacteriology, 2002, 184(3):831-839.
    [25] Sarma AD, Emerich DW. Global protein expression pattern of Bradyrhizobium japonicum bacteroids:a prelude to functional proteomics. Proteomics, 2005, 5(16):4170-4184.
    [26] Chang WS, Franck WL, Cytryn E, Jeong S, Joshi T, Emerich DW, Sadowsky MJ, Xu D, Stacey G. An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum. Molecular Plant-Microbe Interactions, 2007, 20(10):1298-1307.
    [27] Yang SM, Tang F, Gao MQ, Krishnan HB, Zhu HY. R gene-controlled host specificity in the legume-rhizobia symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(43):18735-18740.
    [28] Tsukui T, Eda S, Kaneko S, Sato S, Okazaki S, Kakizaki-Chiba K, Itakura M, Mitsui H, Yamashita A, Terasawa K, Minamisawa K. The type III secretion system of Bradyrhizobium japonicum USDA122 mediates symbiotic incompatibility with Rj2 soybean plants. Applied and Environmental Microbiology, 2013, 79(3):1048-1051.
    [29] Okazaki S, Zehner S, Hempel J, Lang K, Gottfert M. Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii. FEMS Microbiology Letters, 2009, 295(1):88-95.
    [30] Gourion B, Berrabah F, Ratet P, Stacey G. Rhizobium-legume symbioses:the crucial role of plant immunity. Trends in Plant Science, 2015, 20(3):186-194.
    [31] Macho AP, and Zipfel C. Science direct targeting of plant pattern recognition receptor triggered immunity by bacterial type-III secretion system effectors. Current Opinion in Microbiology, 2015, 23(6):14-22.
    [32] Marie C, Broughton WJ, Deakin WJ. Rhizobium type III secretion systems:legume charmers or alarmers? Current Opinion in Plant Biology, 2001, 4(8):336-342.
    [33] Vlot AC, Dempsey DA, Klessig DF. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 2009, 47:177-206.
    [34] Yoshioka K, Kachroo P, Tsui F, Sharma SB, Shah J, Klessig DF. Environmentally sensitive, SA-dependent defense responses in the cpr22 mutant of Arabidopsis. The Plant Journal, 2001, 26(4):447-459.
    [35] Yasuda M, Miwa H, Masuda S, Takebayashi Y, Sakakibara H, Okazaki S. Effector-triggered immunity determines host genotype-specific incompatibility in legume-Rhizobium symbiosis. Plant and Cell Physiology, 2016, 57(8):1791-1800.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙轶芳,赵鹏,刘元,李友国. 大豆快生根瘤菌SMH12效应蛋白NopP在共生固氮过程中的功能[J]. 微生物学报, 2020, 60(10): 2172-2183

复制
分享
文章指标
  • 点击次数:578
  • 下载次数: 1316
  • HTML阅读次数: 2727
  • 引用次数: 0
历史
  • 收稿日期:2019-12-18
  • 最后修改日期:2020-03-26
  • 在线发布日期: 2020-09-30
文章二维码