茶树内生草螺菌ZXN111生长素合成及其对云抗-10号植物的促生功能
作者:
基金项目:

安徽省自然科学基金(1608085QC57);上海市能源作物育种与应用重点实验室开放基金;茶树生物学与资源利用国家重点实验室开放基金(SKLTOF20190110)


Auxin synthesis in tea plant endophytic Herbaspirillum sp. ZXN111 and the plant growth promotion on Yunkang-10
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 以紫娟茶树分离的内生菌水生草螺菌ZXN111为研究对象,通过分子遗传学方法证实该菌株植物生长素吲哚3-乙酸(IAA)合成的主要分子途径。[方法] 参考草螺菌基因组信息中IAA合成基因簇,选取与IAA合成密切相关的候选基因,即芳香族氨基酸转氨酶基因(tyrb),通过基因插入突变与基因互补方法,结合茶树组培苗体内促生能力分析,初步验证水生草螺菌生长素合成的主要机制。[结果] 植物生长素IAA合成候选基因tyrb突变后,突变株tyrb::pK19mobΩ2HMB 48 h的IAA合成量显著低于野生型菌株ZXN111,且tyrb基因互补后,互补株tyrb::pK19mobΩ2HMB(+)的IAA合成能力得到了显著恢复。茶树促生实验发现,突变株tyrb::pK19mobΩ2HMB接种组的茶树组培苗根长、根重及植株鲜重指标上均显著低于野生菌处理组。[结论] 水生草螺菌ZXN111有多条IAA合成途径,其中的吲哚-3-丙酮酸(IPA)是最主要途径,其生长素合成对寄主茶树具有显著的促生功能。

    Abstract:

    [Objective] The predicted mechanism of indole-3-acetic acid (IAA) synthesis was investigated by molecular method on an endophytic bacterium Herbaspirillum aquaticum ZXN111 that was isolated from Zijuan tea. [Methods] Aromatic-amino-acid aminotransferase gene (tyrb) in indole-3-pyruvicacid (IPA) pathway responsible for IAA synthesis was selected on the basis of Herbaspirillum seropedicae genomic analytical results. Gene tyrb was mutated by recombinant plasmid pK19mobΩ2HMB-P-tyrb to produce mutant tyrb::pK19mobΩ2HMB, and a complementation strain tyrb::pK19mobΩ2HMB(+) was further constructed by recombinant plasmid pSRK-Gm-tyrb. IAA synthesis activities of mutant tyrb::pK19mobΩ2HMB, strain tyrb::pK19mobΩ2HMB(+) and wide type ZXN111 were analyzed, and the three strains' plant growth promotion (PGP) activity was evaluated by tissue cultured seedling of Yunkang-10. [Results] After tyrb gene mutated by pK19mobΩ2HMB-P-tyrb insertion, IAA synthetic activity of mutant tyrb::pK19mobΩ2HMB was much lower than that of wild-type ZXN111 in 48 h culture, but IAA synthesis activity of complementary strain tyrb::pK19mobΩ2HMB(+) was restored by plasmid pSRKGm-tyrb. The wide-type strain ZXN111 positively regulated the plant growth of Yunkang-10, while the mutant tyrb::pK19mobΩ2HMB lose the plant promotion activity significantly. [Conclusion] The indole-3-pyruvate (IPA) pathway is the primary IAA synthesis pathway in Herbaspirillum aquaticum ZXN111 and the tyrb is the key gene of IPA pathway, but other alternative pathways are also existed. Auxin production was one of the important contributors to PGP activity of Herbaspirillum aquaticum ZXN111.

    参考文献
    [1] Chen LY, Zhang YM, Chen XY, Fang RX, Zhang LL. Identification of endophytic bacteria selectively enriched in Camellia sinensis leaf. Acta Microbiologica Sinica, 2018, 58(10):1776-1785. (in Chinese) 陈丽莹, 张玉满, 陈晓英, 方荣祥, 张莉莉. 茶树叶际选择性富集的内生细菌的鉴定. 微生物学报, 2018, 58(10):1776-1785.
    [2] Liu WL, Zhan GT, Wang T, Cheng W, You H, Li K, Xu X, Ding KM, Rao HF, Zhang JD, Cheng CS, Li YD, Li Y, Wu WH, Wang XG. Physiochemical properties and growth-promoting effects of Herbaspirillum sp. WT00F. Journal of Hubei University (Natural Science), 2017, 39(3):291-298, 304. (in Chinese) 刘伟林, 占桂婷, 王婷, 程伟, 尤恒, 李珂, 徐萧, 丁坤明, 饶辉福, 张君岱, 程长松, 李亚东, 李洋, 吴文华, 王行国. 草螺菌Herbaspirillum sp. WT00F的生理生化性质和促生作用研究. 湖北大学学报(自然科学版), 2017, 39(3):291-298, 304.
    [3] 程伟. 茶树内生草螺菌WT00C的基因组学研究. 湖北大学硕士学位论文, 2017.
    [4] Wang T, Yang S, Chen YX, Hu LL, Tu Q, Zhang L, Liu XQ, Wang XG. Microbiological properties of two endophytic bacteria isolated from tea (Camellia sinensis L.). Acta Microbiologica Sinica, 2014, 54(4):424-432. (in Chinese) 王婷, 杨升, 陈亚雪, 胡玲玲, 屠琴, 张丽, 刘雪芹, 王行国. 两株茶树内生草螺菌的微生物学特性. 微生物学报, 2014, 54(4):424-432.
    [5] Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB, Fernandez MA, Fungaro MHP, Grisard EC, Hungria M, Madeira HMF, Nodari RO, Osaku CA, Petzl-Erler ML, Terenzi H, Vieira LGE, Steffens MBR, Weiss VA, Pereira LFP, Almeida MIM, Alves LR, Marin A, Araujo LM, Balsanelli E, Baura VA, Chubatsu LS, Faoro H, Favetti A, Friedermann G, Glienke C, Karp S, Kava-Cordeiro V, Raittz RT, Ramos HJO, Ribeiro EMSF, Rigo LU, Rocha SN, Schwab S, Silva AG, Souza EM, Tadra-Sfeir MZ, Torres RA, Dabul ANG, Soares MAM, Gasques LS, Gimenes CCT, Valle JS, Ciferri RR, Correa LC, Murace NK, Pamphile JA, Patussi EV, Prioli AJ, Prioli SMA, Rocha CLMSC, Arantes OMN, Furlaneto MC, Godoy LP, Oliveira CEC, Satori D, Vilas-Boas LA, Watanabe MAE, Dambros BP, Guerra MP, Mathioni SM, Santos KL, Steindel M, Vernal J, Barcellos FG, Campo RJ, Chueire LMO, Nicolás MF, Pereira-Ferrari L, da Conceição Silva JL, Gioppo NMR, Margarido VP, Menck-Soares MA, Pinto FGS, Simão RDCG, Takahashi EK, Yates MG, Souza EM, Richardson PM. Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genetics, 2011, 7(5):e1002064.
    [6] Grossmann K. Auxin herbicides:current status of mechanism and mode of action. Pest Management Science, 2010, 66(2):113-120.
    [7] Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 2007, 31(4):425-448.
    [8] Duca D, Rose DR, Glick BR. Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid. Applied and Environmental Microbiology, 2014, 80(15):4640-4649.
    [9] Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Molecular Plant Pathology, 2008, 9(3):339-355.
    [10] Xin G, Glawe D, Doty SL. Characterization of three endophytic, indole-3-acetic acid-producing yeasts occurring in Populus trees. Mycological Research, 2009, 113(9):973-980.
    [11] Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, McSteen P. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. The Plant Cell, 2011, 23(2):550-566.
    [12] Tao Y, Ferrer JL, Ljung K, Pojer F, Hong FX, Long JA, Li L, Moreno JE, Bowman ME, Lvans LJ, Cheng YF, Lim J, Zhao YD, Ballaré CL, Sandberg G, Noel JP, Chory J. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell, 2008, 133(1):164-176.
    [13] Brandl MT, Lindow SE. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Applied and Environmental Microbiology, 1996, 62(11):4121-4128.
    [14] Fedorov DN, Doronina NV, Trotsenko YA. Cloning and characterization of indolepyruvate decarboxylase from Methylobacterium extorquens AM1. Biochemistry, 2010, 75(12):1435-1443.
    [15] Romasi EF, Lee J. Development of indole-3-acetic acid-producing Escherichia coli by functional expression of IpdC, AspC, and Iad1. Journal of Microbiology and Biotechnology, 2013, 23(12):1726-1736.
    [16] Yan XM, Wang Z, Mei Y, Wang LQ, Wang X, Xu QS, Peng S, Zhou Y, Wei CL. Isolation, diversity, and growth-promoting activities of endophytic bacteria from tea cultivars of Zijuan and Yunkang-10. Frontiers in Microbiology, 2018, 9:1848.
    [17] Luo L, Yao SY, Becker A, Rüberg S, Yu GQ, Zhu JB, Cheng HP. Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation. Journal of Bacteriology, 2005, 187(13):4562-4572.
    [18] Khan SR, Gaines J, Roop II RM, Farrand SK. Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM Expression on Ti plasmid quorum sensing. Applied and Environmental Microbiology, 2008, 74(16):5053-5062.
    引证文献
    引证文献 [0]
    [1]黄友谊,方欣,隋梦圆,江广贤,肖婧仪,王文凤,宁瑶瑶.茶叶微生物研究现状与展望[J].华中农业大学学报,2022,41(5):24-32.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曾秀丽,王志,罗利,王旭,陈宣钦,周育. 茶树内生草螺菌ZXN111生长素合成及其对云抗-10号植物的促生功能[J]. 微生物学报, 2020, 60(10): 2198-2210

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-11-10
  • 最后修改日期:2020-01-07
  • 在线发布日期: 2020-09-30
文章二维码