东北丘陵区林地转型耕地对土壤编码碱性磷酸酶基因的细菌群落的影响
作者:
基金项目:

转基因生物新品种培育重大专项(2015ZX08013002-004,2016ZX08012005-005);公益性行业(农业)科研专项(201503121-04);国家自然科学基金项目(31200424);中国农业科学院科技创新工程项目


Effect of conversion of forest to arable land in the hilly region, Northeast China on soil alkaline phosphatase gene encoding bacterial community
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [66]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 通过研究林地转型耕地对土壤编码碱性磷酸酶基因的细菌群落丰度、多样性和结构的影响,为丘陵区耕地长期施肥下农田土壤微生物多样性丧失的影响机制以及未来的退耕还林过程中土壤微生物多样性的提升和土地可持续利用研究提供一些基础数据和技术支撑。[方法] 采用实时荧光定量PCR(real-time quantitative PCR,qPCR)和高通量测序技术解析土壤编码碱性磷酸酶基因的细菌群落的丰度、多样性和结构变化,并耦合土壤化学性质分析,明确土壤编码碱性磷酸酶基因的细菌群落丰度和多样性与土壤化学性质的关系以及关键的驱动因子。[结果] 林地垦殖为农田后,长期施肥导致土壤酸化,pH从5.58降至4.72,而土壤速效磷则从2.49 mg/kg增至49.3 mg/kg。相应地,耕地土壤编码碱性磷酸酶基因的细菌群落的丰度和Shannon指数均显著低于林地。基于编码碱性磷酸酶的phoD基因(alkaline phosphatase-encoding gene)序列的物种分类表明,丘陵区土壤编码碱性磷酸酶基因的细菌群落的优势门为变形菌门(Proteobacteria)、蓝藻门(Cyanobacteria)、浮霉菌门(Planctomycetes)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)和疣微菌门(Verrucomicrobia),其中林地土壤的蓝藻门的相对丰度显著高于耕地。耕地土壤的慢生根瘤菌属(Bradyrhizobium)和芽孢杆菌属(Bacillus)的相对丰度显著高于林地,而中慢生根瘤菌属(Mesorhizobium)、假单胞菌属(Pseudomonas)、Chlorogloea属、Gemmata属、Phormidesmis属和Pseudolabrys属的相对丰度显著低于林地。土壤编码碱性磷酸酶基因的细菌群落结构因林地转型耕地而发生显著改变。phoD基因丰度和Shannon指数与pH显著正相关,而与总磷、速效磷、硝态氮和铵态氮均显著负相关,其中土壤速效磷是这些影响因素中影响最强烈的,长期施用无机磷肥导致含碱性磷酸酶的土壤细菌群落对有机磷分解的能力退化。[结论] 林地转型耕地加之长期施肥改变了土壤pH和速效磷,并在其他理化因子的协同驱动下,导致土壤编码碱性磷酸酶基因的细菌群落丰度、多样性和结构的显著变化。

    Abstract:

    [Objective] By studying the effect of conversion of forest to arable land on the abundance, diversity and structure of soil alkaline phosphatase gene encoding bacterial community, to provide basic data of soil microbial diversity, for sustainable land use. [Methods] The abundance, diversity and structure of soil alkaline phosphatase gene encoding bacterial community were investigated using real-time fluorescence quantitative PCR (qPCR) and high-throughput sequencing. Combining the determination and statistical analysis of soil chemical properties, relationships among the soil alkaline phosphatase gene encoding bacterial community abundance, Shannon diversity and soil chemical properties were also evaluated, as well as the key driving factors affecting community structure. [Results] After the forest land was reclaimed as arable land, long-term fertilization led to acidification of the soil, the pH dropped from 5.58 to 4.72, and the soil available phosphorus increased from 2.49 mg/kg to 49.3 mg/kg. Correspondingly, the soil alkaline phosphatase gene encoding bacterial community abundance and diversity significantly decreased with the conversion of forest to arable land. Based on species classification of alkaline phosphatase-encoding gene sequence, Proteobacteria, Cyanobacteria, Planctomycetes, Actinobacteria, Firmicutes and Verrucomicrobia were the dominant phyla, and the relative abundance of Cyanobacteria in forest significantly higher than that in arable land. The relative abundance of Bradyrhizobium and Bacillus in arable land were significantly higher than that in forest, while significantly higher relative abundance of Mesorhizobium, Pseudomonas, Chlorogloea, Gemmata, Phormidesmis and Pseudolabrys was found in forest. The structure of soil alkaline phosphatase gene encoding bacterial community was significantly affected by the land-use change. The abundance and Shannon diversity of soil alkaline phosphatase gene encoding bacterial community were significantly positively correlated with pH, but significantly negatively correlated with the soil available phosphorus, total phosphorus, nitrate nitrogen (NO3-) and ammonium nitrogen (NH4+), the soil available phosphorus is the most affected among these factors. The application of inorganic phosphate fertilizer caused the degradation of organophosphorus decomposition ability of soil bacterial community containing alkaline phosphatase. [Conclusion] The soil available phosphorus and pH changed by land-use change and long-term fertilization cause the alteration of the abundance, diversity and structure of the soil alkaline phosphatase gene encoding bacterial community under the coordinated driving of other physical and chemical factors.

    参考文献
    [1] Condron LM, Turner BL, Cade-Menun BJ. Chemistry and dynamics of soil organic phosphorus//Sims J, Sharpley A. Phosphorus:Agriculture and the Environment. Madison, Wisconsin:Agronomy Monographs, 2005:87-121.
    [2] Turner BL, Cheesman AW, Condron LM, Reitzel K, Richardson AE. Introduction to the special issue:developments in soil organic phosphorus cycling in natural and agricultural ecosystems. Geoderma, 2015, 257-258:1-3.
    [3] Schachtman DP, Reid RJ, Ayling SM. Phosphorus uptake by plants:from soil to cell. Plant Physiology, 1998, 116(2):447-453.
    [4] Vitousek PM, Porder S, Houlton BZ, Chadwick OA. Terrestrial phosphorus limitation:mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20(1):5-15.
    [5] Mclaughlin MJ, Baker TG, James TR, Rundle JA. Distribution and forms of phosphorus and aluminum in acidic topsoils under pastures in south-eastern Australia. Australian Journal of Soil Research, 1990, 28(3):371-385.
    [6] Ahlgren J, Djodjic F, Börjesson G, Mattsson L. Identification and quantification of organic phosphorus forms in soils from fertility experiments. Soil Use and Management, 2013, 29(S1):24-35.
    [7] Sharpley AN, Smith SJ, Jones OR, Berg WA, Coleman GA. The transport of bioavailable phosphorus in agricultural runoff. Journal of Environmental Quality, 1992, 21(1):30-35.
    [8] Nannipieri P, Giagnoni L, Landi L, Renella G. Role of phosphatase enzymes in soil//Bünemann E K, Oberson A, Frossard E. Phosphorus in Action. Berlin Heidelberg:Springer International Publishing, 2011:215-243.
    [9] Richardson AE. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology, 2001, 28(9):897-906.
    [10] Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 2009, 321(1/2):305-339.
    [11] Juma NG, Tabatabai MA. Distribution of phosphomonoesterases in soils. Soil Science, 1978, 126(2):101-108.
    [12] Fraser TD, Lynch DH, Gaiero J, Khosla K, Dunfield KE. Quantification of bacterial non-specific acid (phoC) and alkaline (phoD) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields. Applied Soil Ecology, 2017, 111:48-56.
    [13] Dinkelaker B, Marschner H. In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants. Plant and Soil, 1992, 144(2):199-205.
    [14] Krämer S, Green DM. Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biology and Biochemistry, 2000, 32(2):179-188.
    [15] Romanyà J, Blanco-Moreno JM, Sans FX. Phosphorus mobilization in low-P arable soils may involve soil organic C depletion. Soil Biology and Biochemistry, 2017, 113:250-259.
    [16] Tan H, Barret M, Mooij MJ, Rice O, Morrissey JP, Dobson A, Griffiths B, O'Gara F. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biology and Fertility of Soils, 2013, 49(6):661-672.
    [17] Majumdar A, Ghatak A, Ghosh RK. Identification of the gene for the monomeric alkaline phosphatase of Vibrio cholerae serogroup O1 strain. Gene, 2005, 344:251-258.
    [18] Kageyama H, Tripathi K, Rai AK, Cha-Um S, Waditee-Sirisattha R, Takabe T. An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium. Applied and Environmental Microbiology, 2011, 77(15):5178-5183.
    [19] Ragot SA, Kertesz MA, Bünemann EK. phoD alkaline phosphatase gene diversity in soil. Applied and Environmental Microbiology, 2015, 81(20):7281-7289.
    [20] Luo HW, Benner R, Long RA, Hu JJ. Subcellular localization of marine bacterial alkaline phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50):21219-21223.
    [21] Dai JY, Chen D, Wu SQ, Wu XF, Zhou J, Tanq XM, Shao KQ, Gao G. Comparative analysis of alkaline phosphatase-encoding genes (phoX) in two contrasting zones of Lake Taihu. Canadian Journal of Microbiology, 2014, 61(3):227-236.
    [22] Ragot SA, Huguenin-Elie O, Kertesz MA, Emmanuel F, Bünemann EK. Total and active microbial communities and phoD as affected by phosphate depletion and pH in soil. Plant and Soil, 2016, 408(1/2):15-30.
    [23] Neal AL, Rossmann M, Brearley C, Akkari E, Guyomar C, Clark IM, Allen E, Hirsch PR. Land-use influences phosphatase gene microdiversity in soils. Environmental Microbiology, 2017, 19(7):2740-2753.
    [24] Fraser TD, Lynch DH, Bent E, Entz MH, Dunfield KE. Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management. Soil Biology and Biochemistry, 2015, 88:137-147.
    [25] Jorquera MA, Martínez OA, Marileo LG, Acuña JJ, Saggar S, Mora ML. Effect of nitrogen and phosphorus fertilization on the composition of rhizobacterial communities of two Chilean Andisol pastures. World Journal of Microbiology and Biotechnology, 2014, 30(1):99-107.
    [26] Chhabra S, Brazil D, Morrissey J, Burke J, O'Gara F, Dowling DN. Fertilization management affects the alkaline phosphatase bacterial community in barley rhizosphere soil. Biology and Fertility of Soils, 2013, 49(1):31-39.
    [27] Chen XD, Jiang N, Chen ZH, Tian JH, Sun N, Xu MG, Chen LJ. Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials. Applied Soil Ecology, 2017, 119:197-204.
    [28] Luo GW, Ling N, Nannipieri P, Chen H, Raza W, Wang M, Guo SW, Shen QR. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biology and Fertility of Soils, 2017, 53(4):375-388.
    [29] Hu YJ, Xia YH, Sun Q, Liu KP, Chen XB, Ge TD, Zhu BL, Zhu ZK, Zhang ZH, Su YR. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils. Science of the Total Environment, 2018, 628-629:53-63.
    [30] Wei XM, Hu YJ, Razavi BS, Zhou J, Shen JL, Nannipieri P, Wu JS, Ge TD. Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization. Soil Biology and Biochemistry, 2019, 131:62-70.
    [31] Chen XD, Jiang N, Condron LM, Dunfield KE, Chen ZH, Wang JK, Chen LJ. Impact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field, Northeast China. Science of the Total Environment, 2019, 669:1011-1018.
    [32] Sun R, Sun BH, Gao MX, Yang XY, Zhang SL. Changes of soil microbial characteristics under long-term different land use patterns on an anthropogenic loess soil. Journal of Plant Nutrition and Fertilizer, 2015, 21(3):655-663. (in Chinese) 孙瑞, 孙本华, 高明霞, 杨学云, 张树兰. 长期不同土地利用方式下土土壤微生物特性的变化. 植物营养与肥料学报, 2015, 21(3):655-663.
    [33] Schloter M, Dilly O, Munch JC. Indicators for evaluating soil quality. Agriculture, Ecosystems & Environment, 2003, 98(1/3):255-262.
    [34] Lagomarsino A, Benedetti A, Marinari S, Pompili L, Moscatelli MC, Roggero PP, Lai R, Ledda L, Grego S. Soil organic C variability and microbial functions in a Mediterranean agro-forest ecosystem. Biology and Fertility of Soils, 2011, 47(3):283-291.
    [35] Zhu K, Wang R, Li G, Xiu WM, Wang J, Li B, Wang LL, Liu HF, Zhao JN, Yang DL. The response of microbial biomass carbon and metabolic characteristics of albic soil to land use change. Journal of Agro-Environment Science, 2018, 37(10):2194-2201. (in Chinese) 朱珂, 王蕊, 李刚, 修伟明, 王晶, 李冰, 王丽丽, 刘惠芬, 赵建宁, 杨殿林. 土地利用方式变化对白浆土微生物生物量碳及代谢特征的影响. 农业环境科学学报, 2018, 37(10):2194-2201.
    [36] Wang R, Zhu K, Li G, Wang J, Li B, Xiu WM, Liu HF, Zhao JN, Yang DL. Metabolic characteristics of responses of soil fungi to land-use changes in the hilly regions of northeast China. Journal of Agro-Environment Science, 2018, 37(9):1925-1932. (in Chinese) 王蕊, 朱珂, 李刚, 王晶, 李冰, 修伟明, 刘惠芬, 赵建宁, 杨殿林. 东北丘陵区林地、耕地和草地土壤真菌群落代谢特征. 农业环境科学学报, 2018, 37(9):1925-1932.
    [37] Wang R, Wu X, Li G, Xiu WM, Wang LL, Zhang GL. Effects of conversion of forest to arable land on the abundance and structure of the cbbL-harboring bacterial community in Albic soil of the hilly region of Northeast China. Environmental Science, 2019, 40(12):5561-5569. (in Chinese) 王蕊, 吴宪, 李刚, 修伟明, 王丽丽, 张贵龙. 林地转型耕地对东北丘陵区白浆土cbbL细菌群落丰度和结构的影响. 环境科学, 2019, 40(12):5561-5569.
    [38] Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(S1):4516-4522.
    [39] Zhang JJ, Kobert K, Flouri T, Stamatakis A. PEAR:a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics, 2013, 30(5):614-620.
    [40] Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011, 27(16):2194-2200.
    [41] Fish JA, Chai BL, Wang Q, Sun YN, Brown CT, Tiedje JM, Cole JR. FunGene:the functional gene pipeline and repository. Frontiers Microbiology, 2013, 4:291.
    [42] Lou YL, Wang JK, Liang WJ. Impacts of 22-year organic and inorganic N managements on soil organic C fractions in a maize field, northeast China. Catena, 2011, 87(3):386-390.
    [43] Ikoyi I, Fowler A, Schmalenberger A. One-time phosphate fertilizer application to grassland columns modifies the soil microbiota and limits its role in ecosystem services. Science of the Total Environment, 2018, 630:849-858.
    [44] Liang YT, Wu LY, Clark IM, Xue K, Yang FY, Van Nostrand JD, Deng Y, He ZL, McGrath S, Storkey J, Hirsch PR, Sun B, Zhou JZ. Over 150 years of long-term fertilization alters spatial scaling of microbial biodiversity. mBio, 2015, 6(2):e00240-15.
    [45] Godwin CM, Cotner JB. Aquatic heterotrophic bacteria have highly flexible phosphorus content and biomass stoichiometry. The ISME Journal, 2015, 9(10):2324-2327.
    [46] Wei XM, Hu YJ, Peng PQ, Zhu ZK, Atere CT, O'Donnell AG, Wu J S, Ge TD. Effect of P stoichiometry on the abundance of nitrogen-cycle genes in phosphorus-limited paddy soil. Biology and Fertility of Soils, 2017, 53(7):767-776.
    [47] Lagos LM, Acuña JJ, Maruyama F, Ogram A, De La Luz Mora M, Jorquera MA. Effect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsites. Biology and Fertility of Soils, 2016, 52(7):1007-1019.
    [48] Spohn M, Treichel NS, Cormann M, Schloter M, Fischer D. Distribution of phosphatase activity and various bacterial phyla in the rhizosphere of Hordeum vulgare L. depending on P availability. Soil Biology and Biochemistry, 2015, 89:44-51.
    [49] Miller SH, Browne P, Prigent-Combaret C, Combes-Meynet E, Morrissey JP, O'Gara F. Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environmental Microbiology Reports, 2010, 2(3):403-411.
    [50] Rosas SB, Andrés JA, Rovera M, Correa NS. Phosphate-solubilizing Pseudomonas putida can influence the rhizobia-legume symbiosis. Soil Biology and Biochemistry, 2006, 38(12):3502-3505.
    [51] Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y. Rock phosphate-solubilizing Actinomycetes:screening for plant growth-promoting activities. World Journal of Microbiology and Biotechnology, 2008, 24(11):2565-2575.
    [52] Giles CD, Hsu PC, Richardson AE, Hurst RH, Hill JE. Plant assimilation of phosphorus from an insoluble organic form is improved by addition of an organic anion producing Pseudomonas sp. Soil Biology and Biochemistry, 2014, 68:263-269.
    [53] Alori ET, Glick BR, Babalola OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 2017, 8:971.
    [54] Chrismas NAM, Barker G, Anesio AM, Sánchez-Baracaldo P. Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401. BMC Genomics, 2016, 17:533.
    [55] Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, Gilbert JA. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio, 2014, 5(4):e01371-14.
    [56] Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Küsel K, Rillig MC, Rivett DW, Salles JF, Van Der Heijden MG, Youssef NH, Zhang XW, Wei Z, Hol WHG. Where less may be more:how the rare biosphere pulls ecosystems strings. The ISME Journal, 2017, 11(4):853-862.
    [57] Smart JB, Dilworth MJ, Robson AD. Effect of phosphorus supply on phosphate uptake and alkaline phosphatase activity in rhizobia. Archives of Microbiology, 1984, 140(2/3):281-286.
    [58] Al-Niemi TS, Summers ML, Elkins JG, Kahn ML, McDermott TR. Regulation of the phosphate stress response in rhizobium meliloti by PhoB. Applied and Environmental Microbiology, 1997, 63(12):4978-4981.
    [59] Sakurai M, Wasaki J, Tomizawa Y, Shinano T, Osaki M. Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Science and Plant Nutrition, 2008, 54(1):62-71.
    [60] Zhang T, Li YF, Chang SX, Jiang PK, Zhou GM, Liu J, Lin L. Converting paddy fields to Lei bamboo (Phyllostachys praecox) stands affected soil nutrient concentrations, labile organic carbon pools, and organic carbon chemical compositions. Plant and Soil, 2013, 367(1/2):249-261.
    [61] Xu XY, Liu XR, Li Y, Ran Y, Liu YP, Zhang QC, Li Z, He Y, Xu JM, Di HJ. High temperatures inhibited the growth of soil bacteria and archaea but not that of fungi and altered nitrous oxide production mechanisms from different nitrogen sources in an acidic soil. Soil Biology and Biochemistry, 2017, 107:168-179.
    [62] Jackson LE, Burger M, Cavagnaro TR. Roots, nitrogen transformations, and ecosystem services. Annual Review of Plant Biology, 2008, 59:341-363.
    [63] Kuzyakov Y, Xu XL. Competition between roots and microorganisms for nitrogen:mechanisms and ecological relevance. New Phytologist, 2013, 198(3):656-669.
    [64] Wang Y, Zhang FS, Marschner P. Soil pH is the main factor influencing growth and rhizosphere properties of wheat following different pre-crops. Plant and Soil, 2012, 360(1/2):271-286.
    [65] Vershinina OA, Znamenskaya LV. The Pho regulons of bacteria. Microbiology, 2002, 71(5):497-511.
    [66] Apel AK, Sola-Landa A, Rodríguez-García, Martín JF. Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. Microbiology, 2007, 153(10):3527-3537.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王蕊,吴宪,李刚,修伟明,王金鑫,王欣奕,王丽丽,李洁,张贵龙,赵建宁,杨殿林. 东北丘陵区林地转型耕地对土壤编码碱性磷酸酶基因的细菌群落的影响[J]. 微生物学报, 2020, 60(10): 2211-2225

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-11-13
  • 最后修改日期:2020-04-15
  • 在线发布日期: 2020-09-30
文章二维码