中华蜜蜂6日龄幼虫响应蜜蜂球囊菌胁迫的环状RNA应答
作者:
基金项目:

国家自然科学基金(31702190);现代农业产业技术体系建设专项资金(CARS-44-KXJ7);福建省自然科学基金(2018J05042);福建省教育厅中青年教师教育科研项目(JAT170158);福建农林大学杰出青年科研人才计划(xjq201814);福建农林大学科技创新专项基金(CXZX2017342,CXZX2017343)


Circular RNA response of Apis cerana cerana 6-day-old larvae to Ascosphaera apis stress
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [61]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 蜜蜂球囊菌(Ascosphaera apis,简称球囊菌)专性侵染蜜蜂幼虫而导致白垩病,危害蜜蜂健康和养蜂生产。本研究旨在探究中华蜜蜂(Apis cerana cerana,简称中蜂)6日龄幼虫响应球囊菌胁迫的环状RNA(circular RNA,circRNA)差异表达谱及差异表达circRNA(differentially expressed circRNA,DEcircRNA)在宿主胁迫应答中的潜在功能。[方法] 利用去除线性RNA的circRNA-seq技术对正常和球囊菌侵染的中蜂6日龄幼虫肠道(AcCK和AcT)进行测序。利用find_circ软件鉴定circRNA,统计circRNA的长度和环化类型。根据|log2(Fold change)|≥1和P≤0.05的标准筛选DEcircRNA。将DEcircRNA的来源基因比对Gene ontology(GO)数据库和Kyoto Encyclopedia of Genes and Genomes(KEGG)数据库,从而获得功能及通路(pathway)注释。随机挑选3个DEcircRNA进行RT-qPCR验证。[结果] AcCK和AcT的circRNA-seq分别得到76342570和68269362条原始读段(raw reads),经严格质控得到74524108和66974392条有效读段(clean reads),Q30分别为92.75%和94%,GC含量分别为54.31%和54.90%。比对上东方蜜蜂(Apis cerana)参考基因组的短序列读段(anchor reads)共计23648400条。AcCK和AcT中分别鉴定到805和702个circRNA,长度均介于201-1000 nt,数量最多的环化类型均为已注释外显子circRNA,但分布在不同长度、不同环化类型的circRNA数量存在差异。AcCK vs AcT比较组共有494个DEcircRNA,包括257个上调circRNA和237个下调circRNA;上调和下调幅度最大的circRNA分别为novel_circ_000123和novel_circ_000726。上述DEcircRNA的来源基因可注释到11条生物学进程相关条目,9条分子功能相关条目,9条细胞组分相关条目,以及73条通路。进一步分析发现,部分DEcircRNA的来源基因注释到7条细胞免疫通路和3条体液免疫通路。[结论] 中蜂6日龄幼虫响应球囊菌胁迫的过程中可能通过改变分布在不同长度和环化类型的circRNA数量,以及特异性表达一些circRNA和调节部分circRNA的表达量对病原产生应答;novel_circ_000027、novel_circ_000127、novel_circ_000312等DEcircRNA在宿主的胁迫应答过程中可能通过调控氧化磷酸化、细胞和体液免疫等通路发挥特殊作用。研究结果为深入理解中蜂幼虫对球囊菌的胁迫应答机制及二者的相互作用机制提供了新见解。

    Abstract:

    [Objective] Ascosphaera apis exclusively infects honeybee larvae, leading to chalkbrood, a fungal disease damaging honeybee health and beekeeping industry. The objective of this study was to investigate the differential expression pattern of circular RNAs (circRNAs) and differentially expressed circRNAs (DEcircRNAs) involved in Apis cerana cerana 6-day-old larval response to Ascosphaera apis stress, and the putative role of DEcircRNAs in host A. apis-response. [Methods] Normal and A. apis-infected 6-day-old larval guts of A. c. cerana (AcCK and AcT) were sequenced using linear RNA-removed circRNA-seq technology. CircRNAs were identified using find_circ software, followed by summary of length and circulization type of circRNAs. DEcircRNAs were screened out following the standard of |log2(Fold change)|≥1 and P≤0.05. Source genes of DEcircRNAs were annotated to Gene Ontology (Go) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases to gain function and pathway annotations. RT-qPCR was conducted to validate three randomly selected DEcircRNAs. [Results] Based on circRNA-seq, 76342570 and 68269362 raw reads were produced from AcCK and AcT, and 74524108 and 66974392 clean reads were obtained after strict quality control, with Q30 of 92.75% and 94% and GC content of 54.31% and 54.90%. In total, 23648400 anchor reads were mapped to the reference genome of Apis cerana. In AcCK and AcT, 805 and 702 circRNAs were identified; the lengths of these circRNAs were distributed among 201-1000 nt, and the most abundant circulization type was annotated exonic circRNA; however, the numbers of circRNAs distributed in various lengths and circulization types were different. There were 494 DEcircRNAs in AcCK vs AcT comparison group, including 257 up-regulated circRNAs and 237 down-regulated circRNAs, with novel_circ_000123 and novel_circ_000726 having the highest up-regulation and down-regulation levels. Source genes of the aforementioned DEcircRNAs were annotated to 11 biological process-associated terms, nine molecular function-associated terms, nine cellular component-associated terms, and 73 pathways. Further analysis demonstrated partial source genes were engaged in seven cellular immune pathways and three humoral immune pathways. [Conclusion] A. c. cerana 6-day-old larvae may response to A. apis stress by altering the numbers of circRNAs distributed in various lengths and circulization types, specifically expressing some circRNAs, and regulating the expression of partial circRNAs; several DEcircRNAs such as novel_circ_000027, novel_circ_000127 and novel_circ_000312 may play special roles in host A. apis-response via regulation of oxidative phosphorylation, cellular and humoral immune pathways. Our findings offered novel insights into further understanding molecular mechanisms underlying A. c. cerana larval response to A. apis and host-pathogen interaction.

    参考文献
    [1] Liang Q, Chen DF, Wang JD. Effects of temperature, relative humidity and pH on germination of chalkbrood fungus, Ascosphaera apis spore. Chinese Journal of Applied Ecology, 2000, 11(6):869-872. (in Chinese) 梁勤, 陈大福, 王建鼎. 温度、相对湿度和pH对蜜蜂球囊菌孢子萌发的影响. 应用生态学报, 2000, 11(6):869-872.
    [2] Heath LAF, Gaze BM. Carbon dioxide activation of spores of the chalkbrood fungus Ascosphaera apis. Journal of Apicultural Research, 1987, 26(4):243-246.
    [3] Evison SEF. Chalkbrood:epidemiological perspectives from the host-parasite relationship. Current Opinion in Insect Science, 2015, 10:65-70.
    [4] Maxfield-Taylor SA, Mujic AB, Rao S. First detection of the larval chalkbrood disease pathogen Ascosphaera apis (Ascomycota:Eurotiomycetes:Ascosphaerales) in adult bumble bees. PLoS One, 2015, 10(4):e0124868.
    [5] Chen DF, Guo R, Xiong CL, Zheng YZ, Hou CS, Fu ZM. Morphological and molecular identification of chalkbrood disease pathogen Ascosphaera apis in Apis cerana cerana. Journal of Apicultural Research, 2018, 57(4):516-521.
    [6] Zhao HX, Liang Q, Luo YX, Li JH, Zhang XF, Zeng XN. Chalkbrood disease in honey bees. Journal of Environmental Entomology, 2014, 36(2):233-239. (in Chinese) 赵红霞, 梁勤, 罗岳雄, 李江红, 张学锋, 曾鑫年. 蜜蜂白垩病的研究进展. 环境昆虫学报, 2014, 36(2):233-239.
    [7] Hitchcock JD, Christensen M. Occurrence of chalk brood (Ascosphaera apis) in honey bees in the united states. Mycologia, 1972, 64(5):1193-1198.
    [8] Aizen MA, Garibaldi LA, Cunningham SA, Klein AM. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of Botany, 2009, 103(9):1579-1588.
    [9] Aronstein KA, Murray KD. Chalkbrood disease in honey bees. Journal of Invertebrate Pathology, 2010, 103 Suppl 1:S20-S29.
    [10] Qin X, Evans JD, Aronstein KA, Murray KD, Weinstock GM. Genome sequences of the honey bee pathogens Paenibacillus larvae and Ascosphaera apis. Insect Molecular Biology, 2006, 15(5):715-718.
    [11] Shang YF, Xiao GH, Zheng P, Cen K, Zhan S, Wang CS. Divergent and convergent evolution of fungal pathogenicity. Genome Biology and Evolution, 2016, 8(5):1374-1387.
    [12] Meng SJ, Zhou HC, Feng ZY, Xu ZH, Tang Y, Li PY, Wu MH. CircRNA:functions and properties of a novel potential biomarker for cancer. Molecular Cancer, 2017, 16(1):94-94.
    [13] Perkel JM. Assume nothing:the tale of circular RNA. BioTechniques, 2013, 55(2):55-57.
    [14] Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu SS, Yang L, Chen LL. Circular intronic long noncoding RNAs. Molecular Cell, 2013, 51(6):792-806.
    [15] Li ZY, Huang C, Bao C, Chen L, Lin M, Wang XL, Zhong GL, Yu B, Hu WC, Dai LM, Zhu PF, Chang ZX, Wu QF, Zhao Y, Jia Y, Xu P, Liu HJ, Shan G. Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 2015, 22(3):256-264.
    [16] Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nature reviews Genetics, 2019, 20(11):675-691.
    [17] Zhang PF, Wei CY, Huang XY, Peng R, Yang X, Lu JC, Zhang C, Gao C, Cai JB, Gao PT, Gao DM, Shi GM, Ke AW, Fan J. Circular RNA circTRIM33-12 acts as the sponge of MicroRNA-191 to suppress hepatocellular carcinoma progression. Molecular Cancer, 2019, 18(1):105.
    [18] Liu L, Liu FB, Huang M, Xie K, Xie QS, Liu CH, Shen MJ, Huang Q. Circular RNA ciRS-7 promotes the proliferation and metastasis of pancreatic cancer by regulating miR-7-mediated EGFR/STAT3 signaling pathway. Hepatobiliary & Pancreatic Diseases International, 2019, 18(6):580-586.
    [19] Cheng ZA, Yu CT, Cui SH, Wang H, Jin HJ, Wang C, Li BT, Qin ML, Yang C, He J, Zuo QZ, Wang SY, Liu J, Ye WD, Lv YY, Zhao FY, Yao M, Jiang LY, Qin WX. circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1. Nature Communications, 2019, 10:3200.
    [20] Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441):333-338.
    [21] Zhang CL, Wu H, Wang YH, Zhu SQ, Liu JQ, Fang XT, Chen H. Circular RNA of cattle casein genes are highly expressed in bovine mammary gland. Journal of Dairy Science, 2016, 99(6):4750-4760.
    [22] He LB, Zhang AD, Xiong L, Li YM, Huang R, Liao LJ, Zhu ZY, Wang YP. Deep circular RNA sequencing provides insights into the mechanism underlying grass carp reovirus infection. International Journal of Molecular Sciences, 2017, 18(9):1977.
    [23] Guo R, Chen DF, Chen HZ, Fu ZM, Xiong CL, Hou CS, Zheng YZ, Guo YL, Wang HP, Du Y, Diao QY. Systematic investigation of circular RNAs in Ascosphaera apis, a fungal pathogen of honeybee larvae. Gene, 2018, 678:17-22.
    [24] Guo R, Chen DF, Chen HZ, Xiong CL, Zheng YZ, Hou CS, Du Y, Geng SH, Wang HP, Zhou DD, Guo YL. Genome-wide identification of circular RNAs in fungal parasite Nosema ceranae. Current Microbiology, 2018, 75(12):1655-1660.
    [25] Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, Lai EC. Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Reports, 2014, 9(5):1966-1980.
    [26] Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell, 2014, 56(1):55-66.
    [27] Kramer MC, Liang DM, Tatomer DC, Gold B, March ZM, Cherry S, Wilusz JE. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes & Development, 2015, 29(20):2168-2182.
    [28] Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, Shenzis S, Samson M, Dittmar G, Landthaler M, Chekulaeva M, Rajewsky N, Kadener S. Translation of circRNAs. Molecular Cell, 2017, 66(1):9-21.e7.
    [29] Gan HY, Feng TS, Wu YQ, Liu C, Xia QY, Cheng TC. Identification of circular RNA in the Bombyx mori silk gland. Insect Biochemistry and Molecular Biology, 2017, 89:97-106.
    [30] Hu XL, Zhu M, Zhang X, Liu B, Liang Z, Huang LX, Xu J, Yu L, Li K, Zar MS, Xue RY, Cao GL, Gong CL. Identification and characterization of circular RNAs in the silkworm midgut following Bombyx mori cytoplasmic polyhedrosis virus infection. RNA Biology, 2018, 15(2):292-301.
    [31] Hu XL, Zhu M, Liu B, Liang Z, Huang LX, Xu J, Yu L, Li K, Jiang MS, Xue RY, Cao GL, Gong CL. Circular RNA alterations in the Bombyx mori midgut following B. mori nucleopolyhedrovirus infection. Molecular Immunology, 2018, 101:461-470.
    [32] Chen X, Shi W, Chen C. Differential circular RNAs expression in ovary during oviposition in honey bees. Genomics, 2019, 111(4):598-606.
    [33] Thölken C, Thamm M, Erbacher C, Lechner M. Sequence and structural properties of circular RNAs in the brain of nurse and forager honeybees (Apis mellifera). BMC Genomics, 2019, 20:88.
    [34] Xiong CL, Chen HZ, Chen DF, Zheng YZ, Fu ZM, Xu GJ, Du Y, Wang HP, Geng SH, Zhou DD, Liu SY, Guo R. Analysis of circular RNAs and their regulatory networks in the midgut of Apis mellifera ligustica workers. Acta Entomologica Sinica, 2018, 61(12):1363-1375. (in Chinese) 熊翠玲, 陈华枝, 陈大福, 郑燕珍, 付中民, 徐国钧, 杜宇, 王海朋, 耿四海, 周丁丁, 刘思亚, 郭睿. 意大利蜜蜂工蜂中肠的环状RNA及其调控网络分析. 昆虫学报, 2018, 61(12):1363-1375.
    [35] Guo R, Chen HZ, Xiong CL, Zheng YZ, Fu ZM, Xu GJ, Du Y, Wang HP, Geng SH, Zhou DD, Liu SY, Chen DF. Analysis of differentially expressed circular RNAs and their regulation networks during the developmental process of Apis mellifera ligustica worker's midgut. Scientia Agricultura Sinica, 2018, 51(23):4575-4590. (in Chinese) 郭睿, 陈华枝, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 杜宇, 王海朋, 耿四海, 周丁丁, 刘思亚, 陈大福. 意大利蜜蜂工蜂中肠发育过程中的差异表达环状RNA及其调控网络分析. 中国农业科学, 2018, 51(21):4575-4590.
    [36] Chen DF, Chen HZ, Du Y, Zhu ZW, Wang J, Geng SH, Xiong CL, Zheng YZ, Hou CS, Diao QY, Guo R. Systematic identification of circular RNAs and corresponding regulatory networks unveil their potential roles in the midguts of eastern honeybee workers. Applied Microbiology and Biotechnology, 2020, 104(1):257-276.
    [37] Shi J, Hu N, Mo L, Zeng Z, Sun J, Hu Y. Deep RNA sequencing reveals a repertoire of human fibroblast circular RNAs associated with cellular responses to herpes simplex virus 1 infection. Cellular Physiology and Biochemistry, 2018, 47(5):2031-2045.
    [38] Zhang Y, Wang LD, Qiu LL, Pan R, Bai H, Jiang Y, Wang ZX, Bi YL, Chen GH, Chang GB. Expression patterns of novel circular RNAs in chicken cells after avian leukosis virus subgroup J infection. Gene, 2019, 701:72-81.
    [39] Chen DF, Guo R, Xiong CL, Liang Q, Zheng YZ, Xu XJ, Zhang ZN, Huang ZJ, Zhang L, Wang HQ, Xie YL, Tong XY. Transcriptome of Apis cerana cerana larval gut under the stress of Ascosphaera apis. Scientia Agricultura Sinica, 2017, 50(13):2614-2623. (in Chinese) 陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 张曌楠, 黄枳腱, 张璐, 王鸿权, 解彦玲, 童新宇. 中华蜜蜂幼虫肠道响应球囊菌早期胁迫的转录组学. 中国农业科学, 2017, 50(13):2614-2623.
    [40] Guo R, Chen DF, Huang ZJ, Liang Q, Xiong CL, Xu XJ, Zheng YZ, Zhang ZN, Xie YL, Tong XY, Hou ZX, Jiang LL, Dao C. Transcriptome analysis of Ascosphaera apis stressing larval gut of Apis cerana cerana. Acta Microbiologica Sinica, 2017, 57(12):1865-1878. (in Chinese) 郭睿, 陈大福, 黄枳腱, 梁勤, 熊翠玲, 徐细建, 郑燕珍, 张曌楠, 解彦玲, 童新宇, 侯志贤, 江亮亮, 刀晨. 球囊菌胁迫中华蜜蜂幼虫肠道过程中病原的转录组学研究. 微生物学报, 2017, 57(12):1865-1878.
    [41] Du Y, Tong XY, Zhou DD, Chen DF, Xiong CL, Zheng YZ, Xu GJ, Wang HP, Chen HZ, Guo YL, Long Q, Guo R. MicroRNA responses in the larval gut of Apis cerana cerana to Ascosphaera apis stress. Acta Microbiologica Sinica, 2019, 59(9):1747-1764. (in Chinese) 杜宇, 童新宇, 周丁丁, 陈大福, 熊翠玲, 郑燕珍, 徐国钧, 王海朋, 陈华枝, 郭意龙, 隆琦, 郭睿. 中华蜜蜂幼虫肠道响应球囊菌胁迫的microRNA应答分析. 微生物学报, 2019, 59(9):1747-1764.
    [42] Guo R, Wang HP, Chen HZ, Xiong CL, Zheng YZ, Fu ZM, Zhao HX, Chen DF. Identification of Ascosphaera apis microRNAs and investigation of their regulation networks. Acta Microbiologica Sinica, 2018, 58(6):1077-1089. (in Chinese) 郭睿, 王海朋, 陈华枝, 熊翠玲, 郑燕珍, 付中民, 赵红霞, 陈大福. 蜜蜂球囊菌的microRNA鉴定及其调控网络分析. 微生物学报, 2018, 58(6):1077-1089.
    [43] Guo R, Chen DF, Diao QY, Xiong CL, Zheng YZ, Hou CS. Transcriptomic investigation of immune responses of the Apis cerana cerana larval gut infected by Ascosphaera apis. Journal of Invertebrate Pathology, 2019, 166:107210.
    [44] Wang Q, Sun LX, Xiao PX, Liu F, Kang MJ, Xu BH. Study on technology for indoor artificial feeding of Apis cerana cerana larvae. Shandong Agricultural Sciences, 2009, (11):113-116. (in Chinese) 王倩, 孙亮先, 肖培新, 刘锋, 康明江, 胥保华. 室内人工培育中华蜜蜂幼虫技术研究. 山东农业科学, 2009, (11):113-116.
    [45] Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2:accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 2013, 14(4):R36.
    [46] Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009, 10(3):R25.
    [47] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods, 2001, 25(4):402-408.
    [48] Wang JZ, Liu K, Liu Y, Lv Q, Zhang F, Wang HY. Evaluating the bias of circRNA predictions from total RNA-Seq data. Oncotarget, 2017, 8(67):110914-110921.
    [49] Samaranayake YH, Samaranayake LP, Pow EHN, Beena VT, Yeung KWS. Antifungal effects of lysozyme and lactoferrin against genetically similar, sequential Candida albicans isolates from a human immunodeficiency virus-infected southern Chinese cohort. Journal of Clinical Microbiology, 2001, 39(9):3296-3302.
    [50] Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A. A gene network regulating lysosomal biogenesis and function. Science, 2009, 325(5939):473-477.
    [51] McBride WH, Iwamoto KS, Syljuasen R, Pervan M, Pajonk F. The role of the ubiquitin/proteasome system in cellular responses to radiation. Oncogene, 2003, 22(37):5755-5773.
    [52] Ravanan P, Srikumar IF, Talwar P. Autophagy:The spotlight for cellular stress responses. Life Sciences, 2017, 188:53-67.
    [53] Franssens V, Smagghe G, Simonet G, Claeys I, Breugelmans B, De Loof A, Vanden Broeck J. 20-Hydroxyecdysone and juvenile hormone regulate the laminarin-induced nodulation reaction in larvae of the flesh fly, Neobellieria bullata. Developmental and Comparative Immunology, 2006, 30(9):735-740.
    [54] Flatt T, Heyland A, Rus F, Porpiglia E, Sherlock C, Yamamoto R, Garbuzov A, Palli SR, Tatar M, Silverman N. Hormonal regulation of the humoral innate immune response in Drosophila melanogaster. The Journal of Experimental Biology, 2008, 211(16):2712-2724.
    [55] Scott JG, Liu NN, Wen ZM. Insect cytochromes P450:diversity, insecticide resistance and tolerance to plant toxins. Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology, 1998, 121(1/3):147-155.
    [56] Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene, 2005, 24(50):7410-7425.
    [57] Saraav I, Singh S, Sharma S. Outcome of Mycobacterium tuberculosis and Toll-like receptor interaction:immune response or immune evasion? Immunology and Cell Biology, 2014, 92(9):741-746.
    [58] Myllymäki H, Rämet M. JAK/STAT pathway in Drosophila immunity. Scandinavian Journal of Immunology, 2014, 79(6):377-385.
    [59] Li YY, Zhang R, Liu SL, Donath A, Peters RS, Ware J, Misof B, Niehuis O, Pfrender ME, Zhou X. The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera. BMC Evolutionary Biology, 2017, 17:269.
    [60] Xiong CL, Du Y, Wang HQ, Zheng YZ, Fu ZM, Wang HP, Zhang L, Chen DF, Guo R. Unraveling the mechanism regulating the Ascosphaera apis-resistance difference between Apis cerana cerana and Apis mellifera ligustica larvae based on comparative transcriptome analysis. Journal of China Agricultural University, 2019, 24(5):106-114. (in Chinese) 熊翠玲, 杜宇, 王鸿权, 郑燕珍, 付中民, 王海朋, 张璐, 陈大福, 郭睿. 基于比较转录组学分析揭示中华蜜蜂及意大利蜜蜂幼虫的球囊菌抗性差异机制. 中国农业大学学报, 2019, 24(5):106-114.
    [61] Valadkhan S, Gunawardane LS. lncRNA-mediated regulation of the interferon response. Virus Research, 2016, 212:127-136.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈华枝,付中民,王杰,祝智威,范小雪,蒋海宾,范元婵,周丁丁,李汶东,熊翠玲,郑燕珍,徐国钧,陈大福,郭睿. 中华蜜蜂6日龄幼虫响应蜜蜂球囊菌胁迫的环状RNA应答[J]. 微生物学报, 2020, 60(10): 2292-2310

复制
分享
文章指标
  • 点击次数:420
  • 下载次数: 1075
  • HTML阅读次数: 1843
  • 引用次数: 0
历史
  • 收稿日期:2019-12-19
  • 最后修改日期:2020-01-15
  • 在线发布日期: 2020-09-30
文章二维码