钝齿棒杆菌GlnK在氮代谢调控及L-精氨酸合成中的功能
作者:
基金项目:

国家自然科学基金(31770058,31570085);江苏省自然科学基金(BK20181205);教育部重点研究项目(113033A);中央高校基本科研业务费专项资金资助(JUSRP51708A);国家双一流轻工业技术与工程一级学科计划(LITE2018-06)


Role of GlnK in regulating nitrogen metabolism and L-arginine synthesis in Corynebacterium crenatum
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 钝齿棒杆菌是重要的氨基酸生产菌株,本研究针对氮代谢PII信号转导蛋白GlnK展开相关功能研究,分析其在钝齿棒杆菌氮代谢调控及L-精氨酸合成中的作用。[方法] 以GlnK蛋白为研究对象,通过基因敲除等遗传方法获得过表达、敲除及敲弱glnK的重组钝齿棒杆菌,研究GlnK对NH4+吸收的影响,通过RT-qPCR和酶活测定,从转录水平和蛋白水平上揭示GlnK对氮代谢和L-精氨酸合成相关基因表达水平及酶活的影响,通过5-L发酵罐发酵产L-精氨酸研究GlnK对L-精氨酸合成的影响。[结果] 过表达glnK能明显促进NH4+的吸收,而敲除glnK后则会抑制NH4+的摄取;RT-qPCR和酶活测定发现,相比于野生型菌株Cc5-5,glnK过表达菌株Cc-glnK中与铵吸收相关的基因,表达量平均上调约4.58倍,L-精氨酸合成基因簇中基因的表达水平平均上调1.50倍。Cc-glnK中氮代谢相关蛋白的酶活平均提高46.97%;L-精氨酸合成途径上7个关键酶的酶活平均提高30.00%;5-L发酵罐发酵各重组菌株结果表明,Cc-glnK菌株的产量可达49.53 g/L,产率为0.516 g/(L·h),相比于出发菌株Cc5-5,其L-精氨酸产量提高了28.65%。[结论] 过表达GlnK能促进NH4+的吸收及利用,并通过影响L-精氨酸合成途径上关键基因的表达水平,提高关键酶的酶活,最终提高L-精氨酸的产量。本研究为后续探索钝齿棒杆菌氮代谢调控机制及代谢工程改造钝齿棒杆菌生产L-精氨酸提供了一种新的策略。

    Abstract:

    [Objective] In this study, we analyzed the roles of PII signal transduction protein GlnK in nitrogen metabolism regulation and L-arginine biosynthesis in Corynebacterium crenatum. [Methods] The glnK overexpressed, glnK deletion and glnK knock-down strains were constructed. RT-qPCR and determination of enzyme activities were carried out to reveal the effects of GlnK on the expression levels and enzyme activities of nitrogen metabolism-related and L-arginine biosynthesis-related genes and enzymes. The changes of various parameters during the fermentation of recombinant strains were also investigated. [Results] Overexpression of GlnK protein had a significant effect on the absorption of NH4+. The expression levels and enzyme activities of nitrogen metabolism-related and L-arginine biosynthesis-related genes and proteins have generally been up-regulated in Cc-glnK strain. Among them, genes encoding ammonium absorption-related enzymes, such as glnA, gltD and gdh, were significantly up-regulated with an average increase about 4.58 times. The L-arginine yield and productivity of Cc-glnK reached 49.53 g/L and 0.516 g/(L·h), respectively, at the end of fermentation. [Conclusion] Overexpression of GlnK could promote the absorption of NH4+, increase the expression levels of genes and enzymes activities on the L-arginine biosynthesis pathway, ultimately increase the yield of L-arginine. It provided guidance for the subsequent exploration of the nitrogen regulation mechanism and metabolic modification of C. crenatum in the production of nitrogen-containing compounds.

    参考文献
    [1] Burkovski A. Nitrogen control in Corynebacterium glutamicum:proteins, mechanisms, signals. Journal of Microbiology and Biotechnology, 2007, 17(2):187-194.
    [2] Sahm H, Eggeling L, De Graaf AA. Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biological Chemistry, 2000, 381(9/10):899-910.
    [3] Brown DR, Barton G, Pan ZS, Buck M, Wigneshweraraj S. Nitrogen stress response and stringent response are coupled in Escherichia coli. Nature Communications, 2014, 5(1):4115.
    [4] Rehm N, Burkovski A. Engineering of nitrogen metabolism and its regulation in Corynebacterium glutamicum:influence on amino acid pools and production. Applied Microbiology and Biotechnology, 2011, 89(2):239-248.
    [5] Jakoby M, Nolden L, Meier-Wagner J, Krämer R, Burkovski A. AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Molecular Microbiology, 2000, 37(4):964-977.
    [6] Hasselt K, Rankl S, Worsch S, Burkovski A. Adaptation of AmtR-controlled gene expression by modulation of AmtR binding activity in Corynebacterium glutamicum. Journal of Biotechnology, 2011, 154(2/3):156-162.
    [7] Hasselt K, Sevvana M, Burkovski A, Muller YA. Crystallization and preliminary crystallographic analysis of the global nitrogen regulator AmtR from Corynebacterium glutamicum. Acta crystallographica Section F:Structural Biology Communications, 2009, 65(11):1123-1127.
    [8] Forchhammer K. PII signal transducers:novel functional and structural insights. Trends in Microbiology, 2008, 16(2):65-72.
    [9] Lu PL, Ma D, Chen YL, Guo YY, Chen GQ, Deng HT, Shi YG. L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Research, 2013, 23(5):635-644.
    [10] Schulz AA, Collett HJ, Reid SJ. Nitrogen and carbon regulation of glutamine synthetase and glutamate synthase in Corynebacterium glutamicum ATCC 13032. FEMS Microbiology Letters, 2001, 205(2):361-367.
    [11] Zhang JJ, Xu MJ, Ge XX, Zhang X, Yang TW, Xu ZH, Rao ZM. Reengineering of the feedback-inhibition enzyme N-acetyl-L-glutamate kinase to enhance L-arginine production in Corynebacterium crenatum. Journal of Industrial Microbiology & Biotechnology, 2017, 44(2):271-283.
    [12] Zhao QQ, Luo YC, Dou WF, Zhang X, Zhang XM, Zhang WW, Xu MJ, Geng Y, Rao ZM, Xu ZH. Controlling the transcription levels of argGH redistributed L-arginine metabolic flux in N-acetylglutamate kinase and ArgR-deregulated Corynebacterium crenatum. Journal of Industrial Microbiology & Biotechnology, 2016, 43(1):55-66.
    [13] Xu MJ, Rao ZM, Yang J, Xia HF, Dou WF, Jin J, Xu ZH. Heterologous and homologous expression of the arginine biosynthetic argC~H cluster from Corynebacterium crenatum for improvement of L-arginine production. Journal of Industrial Microbiology & Biotechnology, 2012, 39(3):495-502.
    [14] Xu MJ, Zhang X, Rao ZM, Yang J, Dou WF, Jin J, Xu ZH. Cloning, expression and characterization of N-acetylornithine aminotransferase from Corynebacterium crenatum and its effects on L-arginine fermentation. Chinese Journal of Biotechnology, 2011, 27(7):1013-1023. (in Chinese) 徐美娟, 张显, 饶志明, 杨娟, 窦文芳, 金坚, 许正宏. 钝齿棒杆菌N-乙酰鸟氨酸转氨酶的克隆表达分析及其重组菌的精氨酸发酵. 生物工程学报, 2011, 27(7):1013-1023.
    [15] Zhu Y, Guo YY, Ye ML, James FS. Separation and simultaneous determination of four artificial sweeteners in food and beverages by ion chromatography. Journal of Chromatography A, 2005, 1085(1):143-146.
    [16] Takahara K, Akashi K, Yokota A. Continuous spectrophotometric assays for three regulatory enzymes of the arginine biosynthetic pathway. Analytical Biochemistry, 2007, 368(2):138-147.
    [17] Shinners EN, Catlin BW. Arginine biosynthesis in Neisseria gonorrhoeae:enzymes catalyzing the formation of ornithine and citrulline. Journal of Bacteriology, 1978, 136(1):131-135.
    [18] Wolf EC, Weiss RL. Acetylglutamate kinase. A mitochondrial feedback-sensitive enzyme of arginine biosynthesis in Neurospora crassa. Journal of Biological Chemistry, 1980, 255(19):9189-9195.
    [19] Friedrich B, Friedrich CG, Magasanik B. Catabolic N2-acetylornithine 5-aminotransferase of Klebsiella aerogenes:control of synthesis by induction, catabolite repression, and activation by glutamine synthetase. Journal of Bacteriology, 1978, 133(2):686-691.
    [20] Kumar A, Vij N, Randhawa GS. Isolation and symbiotic characterization of transposon Tn5-induced arginine auxotrophs of Sinorhizobium meliloti. Indian Journal of Experimental Biology, 2003, 41(10):1198-1204.
    [21] Xu Y, Glansdorff N, Labedan B. Bioinformatic analysis of an unusual gene-enzyme relationship in the arginine biosynthetic pathway among marine gamma proteobacteria:implications concerning the formation of N-acetylated intermediates in prokaryotes. BMC Genomics, 2006, 7(1):4.
    [22] Tesch M, de Graaf AA, Sahm H. In vivo fluxes in the ammonium-assimilatory pathways in Corynebacterium glutamicum studied by 15N nuclear magnetic resonance. Applied and Environmental Microbiology, 1999, 65(3):1099-1109.
    [23] Si MR, Zhao C, Burkinshaw B, Zhang B, Wei DW, Wang Y, Dong TG, Shen XH. Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(11):E2233-E2242.
    [24] Xu MJ, Rao ZM, Dou WF, Yang J, Jin J, Xu ZH. Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production. Amino Acids, 2012, 43(1):255-266.
    [25] Xu MJ, Li J, Shu QF, Tang M, Zhang X, Yang TW, Xu ZH, Rao ZM. Enhancement of L-arginine production by increasing ammonium uptake in an AmtR-deficient Corynebacterium crenatum mutant. Journal of Industrial Microbiology & Biotechnology, 2019, 46(8):1155-1166.
    [26] Peng F, Wang XY, Sun Y, Dong GB, Yang YK, Liu XX, Bai ZH. Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microbial Cell Factories, 2017, 16(1):201.
    [27] Arcondéguy T, Jack R, Merrick M. PII Signal transduction proteins, pivotal players in microbial nitrogen control. Microbiology and Molecular Biology Reviews, 2001, 65(1):80-105.
    [28] Zhao MX, Jiang YL, Xu BY, et al. Crystal structure of the cyanobacterial signal transduction protein PII in complex with PipX. Journal of Molecular Biology, 2010, 402(3):552-559.
    [29] Li J, Xu MJ, Shu QF, Zhao YW, Tang M, Zhang X, Yang TW, Xu ZH, Rao ZM. Function of uridylyltransferase and uridylyl-removing enzyme GlnD in Corynebacterium glutamicum JNR. Acta Microbiologica Sinica, 2019, 59(11):2206-2217. (in Chinese) 李静, 徐美娟, 舒群峰, 赵雅雯, 唐蜜, 张显, 杨套伟, 许正宏, 饶志明. 双功能尿苷酰转移/去除酶GlnD在谷氨酸棒杆菌JNR中的功能. 微生物学报, 2019, 59(11):2206-2217.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

唐蜜,王晴,杨套伟,张显,徐美娟,饶志明. 钝齿棒杆菌GlnK在氮代谢调控及L-精氨酸合成中的功能[J]. 微生物学报, 2020, 60(10): 2323-2340

复制
分享
文章指标
  • 点击次数:459
  • 下载次数: 1019
  • HTML阅读次数: 2418
  • 引用次数: 0
历史
  • 收稿日期:2019-12-23
  • 最后修改日期:2020-03-27
  • 在线发布日期: 2020-09-30
文章二维码