镉吸附细菌的分离及其对土壤镉的固定
作者:
基金项目:

四川省重点研发项目(2017SZ0087);国家自然科学基金(31872696);四川省重大科技专项课题(2017NZDZX0003)


Isolation of cadmium-adsorbing bacteria for soil cadmium fixation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 探究镉吸附细菌是否能够高效固定土壤有效镉(Cd),为土壤有效Cd的微生物固定提供理论依据。[方法] 利用含Cd2+牛肉膏蛋白胨液体培养基对细菌进行Cd的耐受性测试筛选出镉抗性强的菌株;通过16S rRNA基因相似性及系统进化分析鉴定耐镉细菌,将菌细胞加入含CdCl2溶液中进行Cd2+吸附效率测定;通过土培模拟实验,测定土壤pH、碱解氮、有效磷、速效钾、有机质、CEC、有效Cd及微生物数量来分析镉吸附细菌对镉污染土壤的影响。[结果] 从德阳鱼腥草根际土壤中分离获得的57株细菌对Cd2+表现出不同程度的抗性,并从中筛选出3株耐Cd优势细菌普罗威登斯菌属(Providencia)DY8、芽孢杆菌属(Bacillus)DY3和芽孢杆菌属(Bacillus)DY1-4。其对溶液中的Cd2+表现出较好的吸附作用,吸附效率随着Cd2+浓度升高而降低。DY8、DY3、DY1-4能使镉污染土壤中有效Cd含量分别降低72.11%、68.55%、62.32%,同时显著提高镉污染土壤中碱解氮、有效磷的含量。[结论] Cd污染农田土壤中含有丰富的耐Cd微生物资源,Cd吸附细菌能降低土壤中有效Cd的含量,且能有效改善土壤养分条件。

    Abstract:

    [Objective] To study Cd-adsorbing bacteria for fixing soil Cd. [Methods] Tolerance of microbe against Cd was measured in the beef extract peptone liquid medium containing Cd2+ to select cadmium-resistant strains. The cadmium-tolerant bacteria were identified by 16S rRNA gene similarity and phylogenetic analysis, The adsorption efficiency of bacteria for Cd2+ was determined by adding bacteria cells into the solution containing CdCl2. Soil culture simulation experiment was performed to analyze the effects of cadmium adsorption bacteria on cadmium-contaminated soil by determining soil pH, alkali-hydrolyzed nitrogen, available phosphorus, available potassium, organic matter, CEC, available Cd and the number of microorganisms. [Results] Total of 57 bacteria strains isolated from the rhizosphere soil of Houttuynia cordata at Deyang showed different degrees of resistance to Cd2+. Three dominant Cd-resistant bacteria strains were Providencia DY8, Bacillus DY3 and Bacillus dy1-4. They showed good adsorption efficiency to Cd2+ in liquid. The adsorption efficiency of Cd2+ decreased with the Cd2+ concentration increasing. DY8, DY3 and DY1-4 reduced the effective Cd content in cadmium-contaminated soil by 72.11%, 68.55% and 62.32%, respectively, and significantly increased the alkali-dissolved nitrogen and available phosphorus in cadmium-contaminated soil. [Conclusion] The Cd-contaminated farmland soil contains rich resources of Cd-resistant microorganisms. Cd-absorbing bacteria can reduce the content of effective Cd in soil and improve soil nutrient conditions.

    参考文献
    [1] Sun LJ, Qin Q, Song K, Qiao HX, Xue Y. The remediation and safety utilization techniques for Cd contaminated farmland soil:a review. Ecology and Environment Sciences, 2018, 27(7):1377-1386. (in Chinese) 孙丽娟, 秦秦, 宋科, 乔红霞, 薛永. 镉污染农田土壤修复技术及安全利用方法研究进展. 生态环境学报, 2018, 27(7):1377-1386.
    [2] Wang KJ, Han X, Zhang XZ, Yu HY. Study on effects of passivation material on the frxation of Cd in cd-contaminated soil. Journal of Nuclear Agricultural Sciences, 2020, 34(2):433-441. (in Chinese) 王科积, 韩熙, 张锡洲, 余海英. 钝化材料复配对镉污染土壤中镉的固定效果. 核农学报, 2020, 34(2):433-441.
    [3] Liu ML, Jiang M, Li B, Chen JJ, Zu YQ, Zhan FD. Research advances on the immobilization remediation of farmland soil cadmium pollution. Journal of Yunnan Agricultural University (Natural Science), 2018, 33(2):350-359. (in Chinese) 刘梦丽, 蒋明, 李博, 陈建军, 祖艳群, 湛方栋. 农田土壤镉污染钝化修复研究进展. 云南农业大学学报(自然科学), 2018, 33(2):350-359.
    [4] Xiao QT, Wang JY, Zheng XY, Rong H, Zhang GJ, Wang LH, Xie HL, Li Y, Chen S, Lin RY, Lin WX. Analysis of the differently expressed proteins in rice roots in response to cadmium stress. Acta Ecologica Sinica, 2015, 35(24):8276-8283. (in Chinese) 肖清铁, 王经源, 郑新宇, 戎红, 张国君, 王良华, 谢惠玲, 李艺, 陈珊, 林瑞余, 林文雄. 水稻根系响应镉胁迫的蛋白质差异表达. 生态学报, 2015, 35(24):8276-8283.
    [5] Yang HZ, Liu N, Li YQ, Wei XX, Wang L. Effects of cadmium on glutathione contents and activities of glutathione related enzymes in gill and hepatopancreas of Anodonta woodiana. Journal of Agro-Environment Science, 2015, 34(1):15-21. (in Chinese) 杨惠珍, 刘娜, 李涌泉, 卫晓溪, 王兰. 镉对背角无齿蚌主要组织谷胱甘肽含量和相关酶活性的影响. 农业环境科学学报, 2015, 34(1):15-21.
    [6] Tang XQ, Miao X. Progress of remediation on soil polluted by cadmium. Environmental Engineering, 2013, 31(S1):747-750. (in Chinese) 唐秋香, 缪新. 土壤镉污染的现状及修复研究进展. 环境工程, 2013, 31(S1):747-750.
    [7] Li JR, Xu YM, Lin DS, Liang XF, Sun YB, Wang L. In situ immobilization remediation of heavy metals in contaminated soils:a review. Ecology and Environment Sciences, 2014, 23(4):721-728. (in Chinese) 李剑睿, 徐应明, 林大松, 梁学峰, 孙约兵, 王林. 农田重金属污染原位钝化修复研究进展. 生态环境学报, 2014, 23(4):721-728.
    [8] Zhang X, Fan ZX, Guo DF, Wang LX. Effects of microorganisms on the growth of spinach under Cd stress. Tianjin Agricultural Sciences, 2011, 17(1):81-83, 87. (in Chinese) 张欣, 范仲学, 郭笃发, 王丽香. 3种微生物制剂对轻度镉污染土壤中菠菜生长的影响. 天津农业科学, 2011, 17(1):81-83, 87.
    [9] Ji HW, Wang XM, Pang HW, Li BW, Zhang PP, Hao JT. Effect of Bacillus subtilis and Bacillus megaterium on soil available Cd. Journal of Soil and Water Conservation, 2015, 29(3):325-329. (in Chinese) 纪宏伟, 王小敏, 庞宏伟, 李博文, 张培培, 郝佳腾. 枯草芽孢杆菌与巨大芽孢杆菌对土壤有效态Cd的影响研究. 水土保持学报, 2015, 29(3):325-329.
    [10] Liu ZY, Liu C. Approach on the characteristics of absorbing the cadmium with waste brewer's yeast. Liquor Making, 2008, 35(5):67-69. (in Chinese) 刘振扬, 刘超. 废啤酒酵母吸附镉离子的特性探讨. 酿酒, 2008, 35(5):67-69.
    [11] Shi XY, Zhou GT, Liao SJ, Shan SP, Wang GJ, Guo ZH. Immobilization of cadmium by immobilized Alishewanella sp. WH16-1 with alginate-lotus seed pods in pot experiments of Cd-contaminated paddy soil. Journal of Hazardous Materials, 2018, 357:431-439.
    [12] Pramanik K, Mitra S, Sarkar A, Maiti TK. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. Journal of Hazardous Materials, 2018, 351:317-329.
    [13] Li H, Luo N, Li YW, Cai QY, Li HY, Mo CH, Wong MH. Cadmium in rice:transport mechanisms, influencing factors, and minimizing measures. Environmental Pollution, 2017, 224:622-630.
    [14] Li Y, Pang HD, He LY, Wang Q, Sheng XF. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria. Ecotoxicology and Environmental Safety, 2017, 138:56-63.
    [15] Li XX, Yu Y, Choi L, Song YL, Wu MH, Wang GJ, Li MS. Phenylobacterium soli sp. nov., isolated from arsenic and cadmium contaminated farmland soil. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(5):1398-1403.
    [16] Wang HP, Xie XH, Liu JS. Isolation, identification and characteristics of a Zn-resisting bacterium, Sphingomonas sp. DX-T3-03. Microbiology China, 2010, 37(10):1495-1500. (in Chinese) 王慧萍, 谢学辉, 柳建设. 抗锌细菌Sphingomonas sp. DX-T3-03分离、鉴定及性质. 微生物学通报, 2010, 37(10):1495-1500.
    [17] Farhan SN, Khadom AA. Biosorption of heavy metals from aqueous solutions by Saccharomyces Cerevisiae. International Journal of Industrial Chemistry, 2015, 6(2):119-130.
    [18] Sun LN, Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresource Technology, 2010, 101(2):501-509.
    [19] Liu YL, Qiu ZM, Zhou P, Tong YD, Jiang YM, Zhang XQ, Liu TH. Determination of available microelements in soil by inductively coupled plasma mass spectrometry. Journal of Analytical Science, 2012, 28(6):862-864. (in Chinese) 刘永林, 邱祖民, 周萍, 童迎东, 姜玉梅, 章效强, 刘廷华. 电感耦合等离子体质谱法测定土壤中有效态微量元素. 分析科学学报, 2012, 28(6):862-864.
    [20] 鲍士旦. 土壤农化分析. 第3版. 北京:中国农业出版社, 2000.
    [21] Bao WY, Jiang JW, Zhou Y, Wu YF, Liang ZQ. Screening and genomic analysis of a lignocellulose degrading bacterium. Acta Microbiologica Sinica, 2016, 56(5):765-777. (in Chinese) 鲍文英, 江经纬, 周云, 吴玉峰, 梁志清. 一株木质纤维素降解菌的筛选及其全基因组分析. 微生物学报, 2016, 56(5):765-777.
    [22] Zaidi S, Usmani S, Singh BR, Musarrat J. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere, 2006, 64(6):991-997.
    [23] Lin XY, Mou RX, Cao ZY, Zhu ZW, Chen MX. Isolation and cadmium adsorption mechanisms of cadmium-resistant bacteria strains. Journal of Agro-Environment Science, 2015, 34(9):1700-1706. (in Chinese) 林晓燕, 牟仁祥, 曹赵云, 朱智伟, 陈铭学. 耐镉细菌菌株的分离及其吸附镉机理研究. 农业环境科学学报, 2015, 34(9):1700-1706.
    [24] Zhou G, Yang H, Pan H, Wang C, Fu FH, Lu XY, Tian Y. Isolation, identification and characteristics of a cadmium tolerant Streptomyces strain. Acta Scientiae Circumstantiae, 2017, 37(6):2076-2084. (in Chinese) 周赓, 杨辉, 潘虎, 王翀, 付复华, 卢向阳, 田云. 一株耐镉链霉菌的筛选、鉴定与基本特性分析. 环境科学学报, 2017, 37(6):2076-2084.
    [25] Zhou LY, Ye RJ, Lin ST, Liu J, Xiao QT, Lin SL, Li Y, Lin WX, Lin RY. Screening and identification of cadmium-tolerant bacteria from rhizosphere soils under rice. Chinese Journal of Eco-Agriculture, 2012, 20(5):597-603. (in Chinese) 周丽英, 叶仁杰, 林淑婷, 刘杰, 肖清铁, 林素兰, 李艺, 林文雄, 林瑞余. 水稻根际耐镉细菌的筛选与鉴定. 中国生态农业学报, 2012, 20(5):597-603.
    [26] Wang CJ, Xiong ZT, Xu ZR, Liu RX. Isolation, identification and adsorption characteristics of Cd-resistant rhizobacteria in a nonferrous metal mine. Journal of Ecology and Rural Environment, 2018, 34(5):448-455. (in Chinese) 汪婵娟, 熊治廷, 徐仲瑞, 刘荣相. 有色金属矿区植物根际耐镉菌的分离鉴定与镉吸附特性. 生态与农村环境学报, 2018, 34(5):448-455.
    [27] Zhao G. Study on isolation, identification and characteristics of acid-producing bacteria promoting plants to absorb heavy metals from soil. Journal of Anhui Agricultural Sciences, 2010, 38(18):9696-9698. (in Chinese) 赵光. 促进植物吸收土壤重金属的产酸菌的筛选鉴定及特性研究. 安徽农业科学, 2010, 38(18):9696-9698.
    [28] 夏娟娟. 植物促生内生细菌的筛选及其强化油菜富集土壤铅镉重金属的研究. 南京农业大学硕士学位论文, 2006.
    [29] Manikandan M, Gopal J, Kumaran RS, Kannan V, Chun S. Purification and characterization of a highly active chromate reductase from endophytic Bacillus sp. DGV19 of Albizzia lebbeck (L.) Benth. actively involved in phytoremediation of tannery effluent-contaminated sites. Preparative Biochemistry & Biotechnology, 2016, 46(2):192-199.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

闫敏,秦诗洁,崔永亮,涂卫国,沈甜,刘含,张芳,余秀梅. 镉吸附细菌的分离及其对土壤镉的固定[J]. 微生物学报, 2020, 60(11): 2423-2433

复制
分享
文章指标
  • 点击次数:518
  • 下载次数: 1217
  • HTML阅读次数: 2142
  • 引用次数: 0
历史
  • 收稿日期:2020-01-06
  • 最后修改日期:2020-03-19
  • 在线发布日期: 2020-11-03
文章二维码