虻粪二次堆肥生化特性的动态变化趋势及其微生物演替规律
作者:
基金项目:

国家自然科学基金(41373073);浙江省重点研发计划(2015C03SA420001)


Dynamic features of biochemical property and microbial succession of black soldier fly larvae (Hermetia illucens L) vermicompost during secondary composting
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 通过培养试验动态观察了虻粪在后续二次堆肥过程中生化特性的动态变化趋势,研究了堆体微生物生态的动态演替规律,讨论了虻粪二次堆肥的稳定化机理。[方法] 采取盛有虻粪的圆桶埋入大条垛发酵堆体的动态培养试验,在为期49 d的测试期内间隔7 d动态采样,采用16S rRNA高通量测序开展虻粪堆体样品的微生物多样性与群落结构分析以及代谢功能预测。[结果] 虻粪堆体经历2周快速升温至68.7℃后,逐步降温至第49天的37.7℃,总有机碳、溶解性有机质(DOM)、pH分别达到67.3%、18.4 g/kg、8.0。在堆体熟腐过程中,Shannon指数、Simpson指数和Chao1指数等微生物多样性水平均随堆肥进程而快速增加,而后缓慢下降至结束时的7.45、0.98和985。16S rRNA测序发现,Bacteroidetes(拟杆菌门)、Firmicutes(厚壁菌门)、Proteobacteria(变形菌门)与Actinobacteria(放线菌门)等是堆体微生物群落的主要菌群。与此同时,Corynebacteriaceae(棒状杆菌科)从初始的35.7%下降至结束时的6.5%,Flavobacteriaceae(黄杆菌科)则从3.22%逐步增长至12.6%,Porphyromonadaceae(单胞菌科)快速增加至11.5%之后缓慢下降至与初始水平相当的5.1%。PICRUSt预测发现,在整个虻粪堆肥过程中,氨基糖和核苷酸糖代谢、碳固定通路、甲烷代谢等功能平均相对丰度保持较强水平,且均在堆肥中期(第15–35天)出现峰值,后续均呈现下降态势脂肪代谢、不饱和脂肪酸生物合成代谢、多环芳烃降解以及硫代谢等平均相对丰度较弱的代谢功能呈现先降后升的特征。[结论] 虻粪二次堆肥过程中,物料含水量与DOM快速下降、有机质降解逐步完成以及物料微生物结构与功能趋于稳定等,堆制腐熟后的虻粪生化性质稳定,有利于虻粪有机肥农田再利用。

    Abstract:

    [Objective] The dynamic trends of biochemical property of black soldier fly (Hermetia illucens L., BSF) larvae vermicompost during the subsequent secondary composting was observed through the culture experiment, and the associated succession of microbial ecology of the BSF vermicompost and the stabilization mechanisms were also discussed. [Methods] Dynamic incubation experiment was conducted in which drums containing BSF vermicompost were buried into a full-scale biomass composting heap, and periodic sampling was conducted at intervals of 7 days during the 49-day testing period. 16S rRNA high-throughput sequencing was used to analyze the bacterial diversity, community structure and metabolic function of BSF vermicompost. [Results] After two weeks of rapid rising to 68.7℃, the temperature of BSF vermicompost gradually decreased to 37.7℃ on the 49th day. When the experiment ended, the total organic carbon, dissolved organic matter (DOM) and pH value reached 67.3%, 18.4 g/kg and 8.0, respectively. The bacterial diversity of Shannon index, Simpson index and Chao1 index increased rapidly with the process of composting, and then decreased slowly to 7.45, 0.98 and 985 at the end. 16S rRNA sequencing shows that dominant phyla included Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria among the microbial communities. Meanwhile, Corynebacteriaceae decreased from 35.7% at the beginning to 6.5% at the end, Flavobacteriaceae gradually increased from 3.22% to 12.6%, and Porphyromonadaceae increased rapidly to 11.5% and then slowly decreased to 5.1% at the same level as the initial level. PICRUSt predicted that the average relative abundances of amino acid sugar and nucleotide sugar metabolism, carbon fixation pathway, and methane metabolism remained strong throughout the whole secondary composting process of BSF vermicompost, and all of them peaked at the middle stage of composting (day 15-35) then declined. The average relative abundances of fatty acid metabolism, unsaturated fatty acid biosynthesis metabolism, polycyclic aromatic hydrocarbon degradation and sulfur metabolism were shown as decreasing first with following of rising again. [Conclusion] During the secondary composting of BSF vermicompost, the biochemical features of materials and their microbial ecology have significantly changed along with apparent reductions of moisture, DOM, and total organic matters, thus promoting the rapid maturation and stabilization of BSF vermicompost, which is conducive to the farmland reuse of BSF vermicompost as a novel organic fertilizer.

    参考文献
    [1] Bi SJ, Hong XJ, Han XL, Gao YM, Yan L, Wang WD, Wang YJ. Status and development of resource processing technologies of food waste. China Biogas, 2016, 34(2):58-61. (in Chinese) . 毕少杰, 洪秀杰, 韩晓亮, 高亚梅, 晏磊, 王伟东, 王彦杰. 餐厨垃圾处理现状及资源化利用进展. 中国沼气, 2016, 34(2):58-61.
    [2] Bruno D, Bonelli M, De Filippis F, Di Lelio I, Tettamanti G, Casartelli M, Ercolini D, Caccia S. The intestinal microbiota of Hermetia illucens larvae is affected by diet and shows a diverse composition in the different midgut regions. Applied and Environmental Microbiology, 2019, 85(2):e01864-18.
    [3] Jeon H, Park S, Choi J, Jeong G, Lee SB, Choi Y, Lee SJ. The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens. Current Microbiology, 2011, 62(5):1390-1399.
    [4] Li K, Yang QZ, Lei CL, Zhu F. Status and prospects of the transformation of organic wastes by insects in China. Journal of Environmental Entomology, 2017, 39(2):453-459. (in Chinese) . 李逵, 杨启志, 雷朝亮, 朱芬. 我国利用昆虫转化有机废弃物的发展现状及前景. 环境昆虫学报, 2017, 39(2):453-459.
    [5] Jiang CH, Jin WZ, Tao XH, Zhang Q, Zhu J, Feng SY, Xu XH, Li HY, Wang ZH, Zhang ZJ. Black soldier fly larvae (Hermetia illucens) strengthen the metabolic function of food waste biodegradation by gut microbiome. Microbial Biotechnology, 2019, 12(3):528-543.
    [6] Gold M, Tomberlin JK, Diener S, Zurbrügg C, Mathys A. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment:A review. Waste Management, 2018, 82:302-318.
    [7] Salomone R, Saija G, Mondello G, Giannetto A, Fasulo S, Savastano D. Environmental impact of food waste bioconversion by insects:Application of Life Cycle Assessment to process using Hermetia illucens. Journal of Cleaner Production, 2017, 140:890-905.
    [8] Beskin KV, Holcomb CD, Cammack JA, Crippen TL, Knap AH, Sweet ST, Tomberlin JK. Larval digestion of different manure types by the black soldier fly (Diptera:Stratiomyidae) impacts associated volatile emissions. Waste Management, 2018, 74:213-220.
    [9] Jia XH, Cao WD, Zhao YZ. Organic fertilizer processing and application. Beijing:Chemical Industry Press, 2010. (in Chinese) 贾小红, 曹卫东, 赵永志. 有机肥料加工与施用. 北京:化学工业出版社, 2010.
    [10] Qiao CC, Penton CR, Liu C, Shen ZZ, Ou YN, Liu ZY, Xu X, Li R, Shen QR. Key extracellular enzymes triggered high- efficiency composting associated with bacterial community succession. Bioresource Technology, 2019, 288:121576.
    [11] Shan GC, Xu JQ, Jiang ZW, Li MQ, Li QL. The transformation of different dissolved organic matter subfractions and distribution of heavy metals during food waste and sugarcane leaves co-composting. Waste Management, 2019, 87:636-644.
    [12] Tang ZR, Xi BD, He XS, Tan WB, Zhang H, Li D, Huang CH. Structural characteristics of dissolved organic compounds during swine manure composting. Spectroscopy and Spectral Analysis, 2018, 38(5):1526-1532. (in Chinese) 唐朱睿, 席北斗, 何小松, 檀文炳, 张慧, 李丹, 黄彩红. 猪粪堆肥过程中水溶性有机物结构演变特征. 光谱学与光谱分析, 2018, 38(5):1526-1532.
    [13] Bao SD. Agro-chemical analysis of soil. Beijing:China攠??慲湩慣杵敬浴敵湲瑡??楐?????ㄠ????金????????扮牥?孥㈩ㄠ嶍?另琮攠期旤犜‖???匠樗?漺甭淽沜?柺版放測??????愼牢癲椾獛?????慩湧獬獩潯湴?????匠畋湡摩桳?????攠癇敵汧潧灥浮敢湥瑲?潥晲?捇漬洠灈潡獵瑭?浩慥瑲甠牌椮琠祄?慦湦摥??据瑣楥湳漠扩慮挠瑴敨牥椠慣?灥潭灩畣污慬琠楣潯湭獰?摳畩牴楩湯杮?景畦氠汤?獳捳慯汬敶?捤漠浯灲潧獡瑮楩湣朠?潡晴?潥牲朠慦湲楯捭?桷潡畳獴敥栠潭污摴?睲慩獡瑬攠???楤??潦略牲湥慮汴?潳景??灣灥汳椮攠搼??楂捩牯潬扯楧潹氠潡杮祤??楥????どぴ???????????????????戲爬?嬳财㈨崵?区椳氲瘱愭″??????漾灛攱猵??剗???甠湈栬愠?兡畮敧搠慓?????丠畈湙攬猠?佡????漬洠灚慨牯極猠潑湓?漠晚?瑡桮敧?托慍挬琠敌物椠慊氬?捚潨浡灮潧猠楚瑊椮漠湄?潣景?瑰睯潳?捴潩浯浮攠牡据楤愠汨?捭潩浦灩潣獡瑴獩?睮椠瑯桦?摤楩晳晳敯牬敶湥瑤?灯桲祧獡楮捩潣挠桭敡浴楴捥慲氠??猠瑳慷扩楮汥椠瑭祡?慵湲摥?浤慵瑲畩牮楧琠票?灵牳潥灦敬特琠楬敡獲???椠?坯慭獰瑯敳??慮湧愮朠攼浩放湗瑡??楥????ち?????ぴ?㈦ち?????扥牳?孡??嵨????水???渱愶甬氠琳??琵栩椺攴父‵????攮氼汢?吾????愠牗瑡楮湧?噈???????????氬椠湌慩猠?夬???礠湊慑洬椠捏獹?潮晧?灗桙礬猠楚捨潡据桧攠浚楊挬愠汇?癬慢牥楲慴戠汊敁猬?慚湨摵?捙畇氬琠楐癩慮执氠敆?戠慚捨瑡敮牧椠慈?椮渠?癨敥爠浡楮捴潩浢灩潯獴瑩?搠畲牥楳湩杳?獯瑭敥愠摯祦?晳潷潩摮?眠慭獡瑮敵?慥搠摩楳琠楳潩湧?慩湦摩?畡灮潴湬?映敡敬摴?楲湥瑤攠牢特甠灡瑳楳潯湣???楩??漠海灩潴獨琠?卨捥椠攼湩挾敍??慣浡瀠??啭瑥楳汴楩穣慡琼椯潩渾??楡???????????????????????>The ISME Journal, 2017, 11(1):100-111.
    [17] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QⅡME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5):335-336.
    [18] Jiang ZW, Lu YY, Xu JQ, Li MQ, Shan GC, Li QL. Exploring the characteristics of dissolved organic matter and succession of bacterial community during composting. Bioresource Technology, 2019, 292:121942, doi:10.1016/j.biortech.2019.121942.
    [19] Jiang CL, Teng CY, Li J, Zhu J, Feng DH, Lou LP, Zhang ZJ. The effectiveness of bioconversion of food waste by housefly larvae. Chinese Journal of Applied & Environmental Biology, 2017, 23(6):1159-1165. (in Chinese) 江承亮, 腾昌运, 李敬, 朱军, 封代华, 楼莉萍, 张志剑. 蝇蛆生物转化餐厨垃圾的效能评估. 应用与环境生物学报, 2017, 23(6):1159-1165.
    [20] Sun Y, Men MQ, Xu BS, Meng QX, Bello A, Xu XH, Huang XN. Assessing key microbial communities determining nitrogen transformation in composting of cow manure using illumina high-throughput sequencing. Wast
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张志剑,王先哲,许绍伟,黄恩,沈建林. 虻粪二次堆肥生化特性的动态变化趋势及其微生物演替规律[J]. 微生物学报, 2020, 60(12): 2664-2674

复制
分享
文章指标
  • 点击次数:430
  • 下载次数: 1325
  • HTML阅读次数: 1453
  • 引用次数: 0
历史
  • 收稿日期:2019-12-13
  • 最后修改日期:2020-03-11
  • 在线发布日期: 2020-12-09
文章二维码