木质素的微生物解聚与高值转化
作者:
基金项目:

国家自然科学基金(31970098)


Microbial depolymerization and valorization of lignin
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [74]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    木质纤维素是地球上最丰富的可再生资源。我国每年产生约9亿吨农业秸秆,因得不到有效利用,不仅造成资源浪费,也产生了诸多严峻的环境问题。缺少木质素的高效降解和资源化利用技术是限制木质纤维素产业化的主要瓶颈之一。虽然木质素的降解与转化多年来一直都受到关注,但是由于木质素结构的复杂性及异质性,使其高效利用受限。近年来,微生物具有的“生物漏斗”式转化特性为木质素的高值转化和利用提供了新方向。本文就生物质利用研究以来,微生物在木质素解聚与转化方面的研究历程与最新进展进行了简要的回顾与总结,并初步讨论了目前木质素高值转化面临的机遇与挑战。

    Abstract:

    Lignocellulose is the most abundant renewable resource on the earth. There are about 900 million tons of agricultural straw produced annually in China. Most of them cannot be effectively used, and thus not only causes a waste of resources, but also causes many serious environmental problems. The recalcitrance of lignin is one of the main challenges restricting the industrialization of lignocellulose. Although the degradation and transformation of lignin have been studied for many years, it is still challenged to commercially valorize the lignin because of its inherent heterogeneity. In recent years, the "biological funneling" transformation characteristics of microorganisms have been widely studied and will potentially provide a new direction for the valorization of lignin. This review mainly summarizes the research processes of microbial lignin depolymerization and transformation, and discusses the current opportunities and challenges of lignin biological valorization.

    参考文献
    [1] Alvira P, Negro M, Ballesteros M. Effect of endoxylanase and α-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresource Technology, 2011, 102(6):4552-4558.
    [2] Xu CP, Arancon RAD, Labidi J, Luque R. Lignin depolymerisation strategies:towards valuable chemicals and fuels. Chemical Society Reviews, 2014, 43(22):7485-7500.
    [3] Bugg TDH,Rahmanpour R. Enzymatic conversion of lignin into renewable chemicals. Current Opinion in Chemical Biology, 2015, 29:10-17.
    [4] Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 2005, 96(6):673-686.
    [5] Cao L, Yu IKM, Liu Y, Ruan X, Tsang DCW, Hunt AJ, Ok YS, Song H, Zhang S. Lignin valorization for the production of renewable chemicals:State-of-the-art review and future prospects. Bioresource Technology, 2018, 269:465-475.
    [6] Chen Z,Wan CX. Biological valorization strategies for converting lignin into fuels and chemicals. Renewable and Sustainable Energy Reviews, 2017, 73:610-621.
    [7] Gillet S, Aguedo M, Petitjean L, Morais ARC, da Costa Lopes AM, Lukasik RM, Anastas PT. Lignin transformations for high value applications:towards targeted modifications using green chemistry. Green Chemistry, 2017, 19(18):4200-4233.
    [8] Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M. Lignin valorization:improving lignin processing in the biorefinery. Science, 2014, 344:6185.
    [9] Shao Y, Xia Q, Dong L, Liu X, Han X, Parker SF, Cheng Y, Daemen LL, Ramirez-Cuesta AJ, Yang S, Wang Y. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nature Communications, 2017, 8(16104).
    [10] Parajuli R, Dalgaard T, Jørgensen U, Adamsen APS, Knudsen MT, Birkved M, Gylling M, Schjørring JK. Biorefining in the prevailing energy and materials crisis:a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renewable and Sustainable Energy Reviews, 2015, 43:244-263.
    [11] Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E. Bacterial catabolism of lignin-derived aromatics:New findings in a recent decade:Update on bacterial lignin catabolism. Environmental Microbiology Reports, 2017, 9(6):679-705.
    [12] de Gonzalo G, Colpa DI, Habib MH, Fraaije MW. Bacterial enzymes involved in lignin degradation. Journal of Biotechnology, 2016, 236:110-119.
    [13] Brown ME,Chang MC. Exploring bacterial lignin degradation. Current Opinion in Chemical Biology, 2014, 19:1-7.
    [14] Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, Johnson CW, Chupka G, Strathmann TJ, Pienkos PT, Beckham GT. Lignin valorization through integrated biological funneling and chemical catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(33):12013-12018.
    [15] Kamimura N, Sakamoto S, Mitsuda N, Masai E, Kajita S. Advances in microbial lignin degradation and its applications. Current Opinion in Biotechnology, 2019, 56:179-186.
    [16] Nelsen MP, DiMichele WA, Peters SE, Boyce CK. Delayed fungal evolution did not cause the Paleozoic peak in coal production. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9):2442-2447.
    [17] Taherzadeh MJ,Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production:a review. International Journal of Molecular Sciences, 2008, 9(9):1621-1651.
    [18] Martínez ÁT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez Suárez A, Río Andrade JCd. Biodegradation of lignocellulosics:microbial, chemical, and enzymatic aspects of the fungal attack of lignin. 2005.
    [19] Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports, 2011, 28(12):1883-1896.
    [20] Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GD, Bugg TDH. Development of novel assays for lignin degradation:comparative analysis of bacterial and fungal lignin degraders. Molecular Biosystems, 2010, 6(5):815-821.
    [21] Sanchez C. Lignocellulosic residues:Biodegradation and bioconversion by fungi. Biotechnology Advances, 2009, 27(2):185-194.
    [22] Widsten P,Kandelbauer A. Laccase applications in the forest products industry:a review. Enzyme and Microbial Technology, 2008, 42(4):293-307.
    [23] Ander P,Eriksson K-E. The importance of phenol oxidase activity in lignin degradation by the white-rot fungus Sporotrichum pulverulentum. Archives of Microbiology, 1976, 109(1-2):1-8.
    [24] Leonowicz A, Cho NS, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J. Fungal laccase:properties and activity on lignin. Journal of Basic Microbiology, 2001, 41(3-4):185-227.
    [25] Hofrichter M. Review:lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology, 2002, 30(4):454-466.
    [26] Camarero S, Sarkar S, Ruiz-Duenas FJ, Martinez MJ, Martinez AT. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. Journal of Biological Chemistry, 1999, 274(15):10324-10330.
    [27] Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszczynski A. Lignin degradation:microorganisms, enzymes involved, genomes analysis and evolution. Fems Microbiology Reviews, 2017, 41(6):941-962.
    [28] Kang KY, Jo BM, Oh JS, Mansfield SD. The effects of biopulping on chemical and energy consumption during kraft pulping of hybrid poplar. Wood and Fiber Science, 2007, 35(4):594-600.
    [29] Yang QF, Zhan HY, Wang SF, Fu SY, Li KC. Modification of eucalyptus CTMP fibres with white-rot fungus Trametes hirsute-effects on fibre morphology and paper physical strengths. Bioresource Technology, 2008, 99(17):8118-8124.
    [30] Gonzalez-Perez D, Mateljak I, Garcia-Ruiz E, Ruiz-Dueñas FJ, Martinez AT, Alcalde M. Alkaline versatile peroxidase by directed evolution. Catalysis Science & Technology, 2016, 6(17):6625-6636.
    [31] Martınez-Ínigo M, Gutiérrez A, Del Rıo J, Martınez M, Martınez A. Time course of fungal removal of lipophilic extractives from Eucalyptus globulus wood. Journal of Biotechnology, 2000, 84(2):119-126.
    [32] Dyer T,Ragauskas A. Laccase:a harbinger to kraft pulping. ACS Symposium Series, 2004, 889:339-362.
    [33] Petit-Conil M, Semar S, Niku-Paavola M, Sigoillor J, Asther A, Anke H, Viikari L. Potential of laccases in softwood-hardwood high-yield pulping and bleaching. Progress in Biotechnology, 2002:193-202.
    [34] Yang JS, Ni JR, Yuan HL, Wang E. Biodegradation of three different wood chips by Pseudomonas sp PKE117. International Biodeterioration & Biodegradation, 2007, 60(2):90-95.
    [35] Zabed H, Sahu J, Suely A, Boyce A, Faruq G. Bioethanol production from renewable sources:Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 2017, 71:475-501.
    [36] Maity SK. Opportunities, recent trends and challenges of integrated biorefinery:Part Ⅱ. Renewable and Sustainable Energy Reviews, 2015, 43:1446-1466.
    [37] Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 2013, 27:77-93.
    [38] Vaidya A,Singh T. Pre-treatment of Pinus radiata substrates by basidiomycetes fungi to enhance enzymatic hydrolysis. Biotechnology Letters, 2012, 34(7):1263-1267.
    [39] Zhang XY, Yu HB, Huang HY, Liu YX. Evaluation of biological pretreatment with white rot fungi for the, enzymatic hydrolysis of bamboo culms. International Biodeterioration & Biodegradation, 2007, 60(3):159-164.
    [40] Ferraz A, Cordova AM, Machuca A. Wood biodegradation and enzyme production by Ceriporiopsis subvermispora during solid-state fermentation of Eucalyptus grandis. Enzyme and Microbial Technology, 2003, 32(1):59-65.
    [41] Lee JW, Kim HY, Koo BW, Choi DH, Kwon M, Choi IG. Enzymatic saccharification of biologically pretreated pinus densiflora using enzymes from brown rot fungi. Journal of Bioscience and Bioengineering, 2008, 106(2):162-167.
    [42] Ma FY, Yang N, Xu CY, Yu HB, Wu JG, Zhang XY. Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresource Technology, 2010, 101(24):9600-9604.
    [43] Yu H, Guo G, Zhang X, Yan K, Xu C. The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresource Technology, 2009, 100(21):5170-5175.
    [44] Song LL, Yu HB, Ma FY, Zhang XY. Biological pretreatment under non-sterile conditions for enzymatic hydrolysis of corn stover. Bioresources, 2013, 8(3):3802-3816.
    [45] Schilling JS, Tewalt JP, Duncan SM. Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Applied Microbiology and Biotechnology, 2009, 84(3):465-475.
    [46] Wang HL, Pu YQ, Ragauskas A, Yang B. From lignin to valuable products-strategies, challenges, and prospects. Bioresource Technology, 2019, 271:449-461.
    [47] Saraeian A, Nolte MW, Shanks BH. Deoxygenation of biomass pyrolysis vapors:Improving clarity on the fate of carbon. Renewable and Sustainable Energy Reviews, 2019, 104:262-280.
    [48] Rahimi A, Ulbrich A, Coon JJ, Stahl SS. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature, 2014, 515(7526):249-252.
    [49] Shuai L, Amiri MT, Questell-Santiago YM, Héroguel F, Li Y, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher JS. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science, 2016, 354(6310):329-333.
    [50] Pang J, Zheng M, Li X, Sebastian J, Jiang Y, Zhao Y, Wang A, Zhang T. Unlock the compact structure of lignocellulosic biomass by mild ball milling for ethylene glycol production. ACS Sustainable Chemistry & Engineering, 2018, 7(1):679-687.
    [51] Beckham GT, Johnson CW, Karp EM, Salvachúa D, Vardon DR. Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology, 2016, 42:40-53.
    [52] Xie SX, Ragauskas AJ, Yuan JS. Lignin conversion:opportunities and challenges for the integrated biorefinery. Industrial Biotechnology, 2016, 12(3):161-167.
    [53] Madkour MH, Heinrich D, Alghamdi MA, Shabbaj Ⅱ, Steinbüchel A. PHA recovery from biomass. Biomacromolecules, 2013, 14(9):2963-2972.
    [54] Chen GQ,Wang Y. M楥摤?扣祡??楡??畬物正桡潴汩摯敮牳椠慯?朠汢畩浯慰敯??楥????剳ㄠ???楹??楤潲瑯數捹桡湬潫污潮杯祡?慥湳搮??楩漾敃湨杩楮湥敳敥爠楊湯杵??楡???????????????????????????戰爱?嬬??崱??椩爺欷?吹???愶爮爼敢汲氾?刵????湲穡祭浶慡瑳楨挠??挠潍浯扡畺獺瑥楮潩渠??瑶桡敲?浨椠捆爬漠扇楨慯汬?摭敩朠牂慡摮慡瑤楫潵湫?漠晎?氠楃杯湭楰湡???楯??湯湦甠慤汩?剦敥癲楥敮睴?潳景??楥据牴潳戠楦潯汲漠来祸??楡?????????????????は???扵牴?孲?ぴ嵥?剦敲湯摭攠爼獩 ̄呃??噲慩湡?摩敤湵??潮獥捣桡?卯???漯敩氾攠眼楩樾湅?卧????卲捩桮畧琠祩獮攠牌?坦??卓散汩獥?????椯杩渾椬渠?昰椱爸猬琠?戸椨漱洩愺猲猰?昲爸愮挼瑢楲漾湛愵琶楝漠湓?瑬桶敡?慨搦瘣攲渵琰※潡映?愬挠瑋楡癲数?獅瑍愬戠楎汩業獬慯瑳椠潃湔?猠瑖牡慲瑤敯杮椠敄獒???楥??湨敡牭朠祇??愠浔灯???湤癳椠牬潩湧浮敩湮琠慣汯?即捯楬敩湤捡整??椠????ひ?????ど???????????????戠牬?孧??嵮??敥異獯獬?偭???卺捡潴瑩瑯????呤爠慰湲????坴攠獧瑥睮潥潲摡?乩???摢敹?噢牡楣整獥??????慩爾瑇慲?????牨潥浭慩瑳楴捲?洼漯湩漾洬攠爲猰?戵礬?椱渷?猱椱琩町?挹漵渱瘭攴爹猶椷漮渼?潲显?爵攷慝挠瑚楡癫敺?楳湫瑩攠牊洬攠摂楲慵瑩敪獮?楮湣?琠桐敃?愬挠楊摯?捧慥瑲慩汵祳稠敁摌?搠敗灥潣汫票浵敹牳楥穮愠瑂楍漮渠?潨晥?汣楡杴湡楬湹???椠??潬畯牲湩慺污?潩景?琠桯敦??浩敧牮楩据愠湦??栠整浨楥挠慰汲?卤潵捣楴敩瑯祮??楦????づ???????????????????????扭物?孡?㈠嵒?坶慩湥杷?夼堯? ̄?椠甲‰儱??夠愱渱‰????愳漵‵夲??‵圹愹渮朼?奲??圵愸湝朠?坩?????渠潏癬敳汯?氠楍杌測椠湓?摩敮杤牥愠摓愬琠楗潡湮?戠慘挬琠效牡楯愠汎?挬漠湙獯潯爠瑃楇甬洠?晨潡牧?敡映晓椬挠楄敵湮瑬?灰甠汊灒椬渠材???楑??楋潡牯攠獋潃甬爠捒敡?呡敵捳桫湡潳氠潁杊礬??楩?????ㄠ????????ㄠ???????扳牴?季??嵡?剩慭橩????副敮搠摯祦???????桲慢湯摨特慤?剡??倠畯牵潴桰極瑴??????慩灧汮敩祮?????楥潳摳敡杢物慬摩慴瑹椠潢湹?潣景?止物慮晡瑴?汲楩条湬椠湰?扥祴??楡??慥据楴氮氠甼獩??楲??獮瀠?楨獥潭汩慳瑴敲摹?是物漾洬?猲氰由搷本攠?漹昨′瀰甩氺瀴?愳渹搭?瀹愵瀵攮爼?浲椾汛氵???楓??楶潡摣敨杵牡愠摄愬琠楒潹湤??楫???㈠ぁふ???ㄠ??????????????戬爠?孬??嵫??敁椬戠?卯????楲氠汊敔礬?呃剬???慬瑡据桤攠牎?倬????潯潲癥攠牊?????慲牣汨獥潳渠??????楮浥敭湡敮穮??慄猬挠潋??摡???乡愠歒愬朠慍睩慣??穮略浲椠????卐汥整楥杲桳瑯敮爠?削???呯楨敲湥?????楖条湲楤湯?搠敄杒爬愠摂慥瑣楫潨湡?椠湇?眬漠潇摵?晳攠敁摍椮渠杍?楴湡獢敯捬瑩獣???楧?偮牥潥捲敩敮摧椠湯杦猠?潩显?瑳桥敵?乯慭瑯楮潡湳愠汰??捩慤摡攼洯祩 ̄漠晦?卲挠楩敮湣捲敥獡?潥晤?瑰桯敬?啨湹楤瑲敯摸?卡瑬慫瑡敮獯?潴晥??浲敯牤極捣慴??楮????ね?????ど???????????????????扴牥?孨??嵬?呧慹礼氯潩爾???‰?愰爬搠椱洳愨渳?????栭洸愱搳????匾慛椶渰獝戠界牵礠?偎??乂潲物牧楨獡?倠???甠杌杩?呓???獩潮汳慫瑥楹漠湁?漮映?扩愾捒瑡敬牳楴慯汮?獡琠牥慵楴湲獯?慨扡氼支?琾漠?洱收琠慡扳漠污椠穰敬?汴楦杯湲業渠?景牲漠浴?獥挠牰敲敯湤極湣杴?潯普?敯湦瘠楢物潯湦浵敥湬瑳愬氠?獩慯浤灥汧敲獡???楬??潰畬牡湳慴汩?潳昬??灮灤氠楦敩摮??楣捨牥潭扩楣潡汬潳朠祦??業????づ?????????????????っ??戮爠?孩??嵩?乴略浣慨瑮慯????漠牦楯獲愠歂楩????卬挠牐敲敯湤極湣杴?潯普?浡慮牤椠湏数?扩慭捩瑺敡牴楩慯?琼漯?猾礬渠琲栰攱猶椺稳攲‵瀭漳氵礱栮礼摢牲漾硛礶愱汝欠慂湲潩慧瑨敡?映牃潊洬?汚楨杩湬楡渠?挬漠湓瑨物楳扨畡瑴楳潫湡?潡映?氬椠杖湯楬湯?摡攠牔楇瘬愠瑓楩癮敳獫?瑹漠?扊椮漠獍祡湮瑩桰敵獬楡獴?扯祮??楦?似捩放慒湡楬浳潴湯慮獩?搠潥畵摴潲牯潰晨晡椼椯???楣???楯??捳獴?卲畡獧瑥愠楰湡慴扨汷敡??栠整浯椠獰瑲牯祤??慥洠灵???湵杬椠湢敩敯爭楢湡杳??椠????ふ??????????????????扡牲?孂??嵣?剥業敩獳整湲晹攼氯摩 ̄?匠?‰匱挲栬氠漶猴猺″倴??″?愶渮搼敢汲猾浛愶渲?????敥瑺慩杮敡渠潎洬椠捙獡??攠湂漬洠楌捥?慥湢慶汲祥猠楒献?潆晲?浭椠捯牲潧扡楮慩汣?捰潯浬浬畵湴楡瑮楴敳猠???楢??湰湬畡慳汴?剣敳瘺楩敮睳?潧晨??攠湩敮瑴楯挠獴??椠????づね???????????????扭牡?孩??嵣??数牯湵慮湤摳攠穢??甼敩社潃????剡當楩穤??甠敮?湣瑡楴汯摲攮?愯獩 ̄??? ̄?敥牷爠敂楩牯慴?偣???汬潯畧摹愼猯?????椰戱戵攬琠琳′?匱???愷渭攵猳献愼?偲???愳牝爠潄湵搠潇??????慮洠敊猬?呙奵??匬攠敌汵敮渠晓爮攠畃湯摮?????潵扳漠獰?卯???潴浩灯慮爠慯瑦椠癰敯?杹攭渳漭浨楹捤獲?潸晹??楴??敡牴楥瀠潢特椠漼灩猾楒獡?獳畴扯癮敩牡洠楥獵灴潲牯慰??椼??愾渠摩??楡?側桷慯渭敳牴潡捧桥愠散瑵敬?捵桲牥礠獳潹獳灴潥牭椮甠洼??楊??灲牮潡癬椠摯敦?楂湩獯楴来档瑨?楯湬瑯潧?猼支汩放挬琠椲瘰攰?氬椠朸游椨渱漩氺礵猹椭猶???楢?倾牛漶挴敝攠摌楩渠杍猬?潅晳?瑲桩敤?乥愠瑋椬漠湌慩汵??挬愠摗敩浬祫?潮晳?卍挮椠故湮捨敡獮?潥晭?瑮桴攠?啦渠楰瑯敬摹?卹瑤慲瑯數獹?潵晴??浡整牥椠挨慐??椩????つ?????の?????????????????扡牬?孡??嵮??桰慲汥楴汲??却??潮汴氠楬湩獱?????卩祴湨琠桡敮琠楯捸?扤楡潴汩潶来礠?慮灺灹汭楥挭慭瑥楤潩湡獴?捲漭浳敵?潦晡?慴条敮???楹?乴慥瑭甠牵敮?剥敲瘠楐敬睡獣??整湴攭瑂極捲獭??椠???㈠っ?の?????????????????扳物?孮???崼?匾慂汩癯慲捥桳????づ?慔?????慬瑯慧桹椼爯慩 ̄刬?′?氱改瘮攼汢慲渾摛?丵卝???桨慬湭湡慮?倠??删敆獲捩档??????氠慒捥歩?????倠畆爬瘠楋湵敳?卡佮??娬椠湌歩?????偮牧椠效琬漠?????愠牒琬??????湧敥穲??????楥杲湩楮湧?摃攬瀠潐氦祯浵敭牬椻穴慴瑥楲漠湍?戠祓?晨畷湡杲慴決?獅攮挠片敥瑮潯浭敥猠?慥湱摵?慮?浥椠捯牦漠扴楨慥氠?獩楯湰歬???楩??牰敲敯湤??桩敮浧椠猢瑋牮祡??楧???㈠ぢ????????㈠???げ????は????扥牵?孲?ば?嵡?堯楩放?午報???椼?儾???慵牲步椠?偩??婥档潨畮?????夼甯慩渾??匲?‰?椬朠渲椴渨?愰猩?爱攲渵攷眭愱戲氶攲?愼湢摲 ̄獛甶瀶敝爠楚潨牡?慧猠灘栬愠汌瑩?戠楙湎搬攠牗?洠潑搬椠晗楡敮牧???椠??捥獮?升畑献琠慓楹湮慴扨汥整??栠敢浩楯獬瑯牧祹??慮浤瀠???湯杭楥渭敥敤物楴湩杮??楴?????????????????????????扴牡?孯?ど?崠??楧?兮??塲楩敮?匮堠??匾敔牲敥浮?坳???丠慂楩歯??呣???楬畯????奩甾愬渠′?匱??儼畢慲氾楛琶礷?挠慘物扯潮湧?時椬戠敌物猠?晋爬漠浌?晵爠慌挬琠楚潨湡慯琠敄摄?氠楚杨湡楮湧???椬??物攠敃湈??桇敥浮楯獭瑥爠祥??楴???㈠は?????????????????????扨牡?嬯???嵵?坩慮湧朠?偮??奬敥????奰楯湲?奴塩???桢敡湳?????楉慓湐?夭???圹愠湴来?婨剮???慥漮??????畯潴?奣????畯湧杹椠?敯湲愠扂汩敯摦?獥祬湳琼栯敩猾椬猠′漰昱?甬氠琱爱愨栱椩机栱?猲甮爼晢慲挾敛?愸牝攠慓?灴潯爠潍甬猠?捡慳牡扩漠湅???楤??摍瘬愠湈捡整摴??慔琬攠牋楩慭汢獡??椠????ふ??????????????????ltiple polychlorinated biphenyl transformation systems in the gram-positive bacterium Rhodococcus sp. strain RHA1. Applied and Environmental Microbiology, 1995, 61(12):4510-4513.
    [69] Villalba MS, Alvarez HM. Identification of a novel ATP-binding cassette transporter involved in long-chain fatty acid import and its role in triacylglycerol accumulation in Rhodococcus jostii RHA1. Microbiology, 2014, 160:1523-1532.
    [70] Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leach AL, Ghiviriga I, Dancel C. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet, 2011, 7(9):e1002219.
    [71] Xie SX, Sun S, Lin FR, Li MZ, Pu YQ, Cheng YB, Xu B, Liu ZH, da Costa Sousa L, Dale BE. Mechanism-guided design of highly efficient protein secretion and lipid conversion for biomanufacturing and biorefining. Advanced Science, 2019, 6(13):1801980.
    [72] Xie SX, Sun QN, Pu YQ, Lin FR, Sun S, Wang X, Ragauskas AJ, Yuan JS. Advanced chemical design for efficient lignin bioconversion. Acs Sustainable Chemistry & Engineering, 2017, 5(3):2215-2223.
    [73] Zhao C, Xie SX, Pu YQ, Zhang R, Huang F, Ragauskas AJ, Yuan JS. Synergistic enzymatic and microbial lignin conversion. Green Chemistry, 2016, 18(5):1306-1312.
    [74] Jin M, Slininger PJ, Dien BS, Waghmode S, Moser BR, Orjuela A, Sousal LdC, Balan V. Microbial lipid-based lignocellulosic biorefinery:feasibility and challenges. Trends in Biotechnology, 2015, 33(1):43-54.
    [75] Kosa M,Ragauskas AJ. Lignin to lipid bioconversion by oleaginous Rhodococci. Green Chemistry, 2013, 15(8):2070-2074.
    [76] Hernandez MA, Comba S, Arabolaza A, Gramajo H, Alvarez HM. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains. Applied Microbiology and Biotechnology, 2015, 99(5):2191-2207.
    [77] MacEachran DP,Sinskey AJ. The Rhodococcus opacus TadD protein mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools. Microbial Cell Factories, 2013, 12(104):1475-2859.
    [78] Sainsbury PD, Hardiman EM, Ahmad M, Otani H, Seghezzi N, Eltis LD, Bugg TDH. Breaking down lignin to high-value chemicals:the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. Acs Chemical Biology, 2013, 8(10):2151-2156.
    [79] Sainsbury PD, Mineyeva Y, Mycroft Z, Bugg TDH. Chemical intervention in bacterial lignin degradation pathways:Development of selective inhibitors for intradiol and extradiol catechol dioxygenases. Bioorganic Chemistry, 2015, 60:102-109.
    [80] Yang WW, Tang HZ, Ni J, Wu QL, Hua DL, Tao F, Xu P. Characterization of two streptomyces enzymes that convert ferulic acid to vanillin. PLoS One, 2013, 8(6):e67339.
    [81] Sharma RK, Mukhopadhyay D, Gupta P. Microbial fuel cell-mediated lignin depolymerization:a sustainable approach. Journal of Chemical Technology and Biotechnology, 2019, 94(3):927-932.
    [82] Wu WH, Dutta T, Varman AM, Eudes A, Manalansan B, Loque D, Singh S. Lignin valorization:two hybrid biochemical routes for the conversion of polymeric lignin into value-added chemicals. Scientific Reports, 2017, 7:8420.
    [83] Becker J, Kuhl M, Kohlstedt M, Starck S, Wittmann C. Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Microbial Cell Factories, 2018, 17(1):115.
    [84] Barton N, Horbal L, Starck S, Kohlstedt M, Luzhetskyy A, Wittmann C. Enabling the valorization of guaiacol-based lignin:Integrated chemical and biochemical production of cis,cis-muconic acid using metabolically engineered Amycolatopsis sp ATCC 39116. Metabolic Engineering, 2018, 45:200-210.
    [85] Salvachua D, Johnson CW, Singer CA, Rohrer H, Peterson DJ, Black BA, Knapp A, Beckham GT. Bioprocess development for muconic acid production from aromatic compounds and lignin. Green Chemistry, 2018, 20(21):5007-5019.
    [86] Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, Mehlmann K, Schneider R, Pleissner D, Rinkel J, Dickschat JS, Venus J, van Duuren JBJH, Wittmann C. From lignin to nylon:Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metabolic Engineering, 2018, 47:279-293.
    [87] Sonoki T, Takahashi K, Sugita H, Hatamura M, Azuma Y, Sato T, Suzuki S, Kamimura N, Masai E. Glucose-free cis,cis-muconic acid production via new metabolic designs corresponding to the heterogeneity of lignin. Acs Sustainable Chemistry & Engineering, 2018, 6(1):1256-1264.
    [88] Jung DH, Kim EJ, Jung E, Kazlauskas RJ, Choi KY, Kim B-G. Production of p-hydroxybenzoic acid from p-coumaric ac
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵一全,张慧,张晓昱,谢尚县. 木质素的微生物解聚与高值转化[J]. 微生物学报, 2020, 60(12): 2717-2733

复制
分享
文章指标
  • 点击次数:588
  • 下载次数: 1704
  • HTML阅读次数: 9104
  • 引用次数: 0
历史
  • 收稿日期:2020-09-03
  • 最后修改日期:2020-11-09
  • 在线发布日期: 2020-12-09
文章二维码