杨凌糖丝菌蛋白激发子HSyp1和HSyp2诱导植物抗病功能
作者:
基金项目:

国家自然科学基金(32072477);中国烟草总公司重大科技项目[110202101056(LS-16)];中国烟草总公司陕西省公司科技项目(KJ-2021-02)


Protein elicitors HSyp1 and HSyp2 from Saccharothrix yanglingensis Hhs.015 enhance disease resistance of plants
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】前期研究从杨凌糖丝菌(Saccharothrix yanglingensis) Hhs.015全基因组中初步筛选出4种能够诱导烟草发生过敏反应(hypersensitive response)的蛋白激发子,本研究进一步探讨引发明显HR的2个激发子及其相关的免疫机理,为深入研究Hhs.015诱导植物抗病性的分子机制提供依据。【方法】通过过敏反应和活性氧检测等方法筛选能够诱发植物免疫反应的蛋白激发子。使用原核表达系统纯化蛋白,通过观察病斑表型、测定防御相关酶活性及分析防御基因表达,验证这些激发子在诱导植物抗病性方面的功能。同时,将蛋白激发子应用于苗期拟南芥(Arabidopsis thaliana),以观察其促生效果。【结果】从Hhs.015中筛选出能够引起烟草(Nicotiana benthamiana)过敏反应、促进胼胝质和活性氧沉积、防御基因上调,且能够以可溶性形式表达的蛋白激发子HSyp1和HSyp2。植物抗病性检测结果表明,HSyp1和HSyp2能够提高不同植物对核盘菌(Sclerotinia sclerotiorum)、黑杆病菌(Phytophthora capsica)以及黑腐皮壳菌(Valsa mali)的抗病性。此外,研究还发现HSyp1和HSyp2对苗期拟南芥的子叶和根部发育具有一定的促生作用,其中HSyp2的促生效果比HSyp1更为显著。【结论】本研究筛选出2个蛋白激发子HSyp1和HSyp2,能够激发植物免疫反应,提高植物抗病能力,并具有促生作用。这些发现为开发新型生物农药提供了理论基础,也为其未来的田间应用提供了实验依据。

    Abstract:

    [Objective] Preliminary studies have identified four protein elicitors from the whole genome of Saccharothrix yanglingensis Hhs.015 that can induce a hypersensitive response (HR) in Nicotiana benthamiana. This study investigated the two elicitors capable of triggering a strong HR and their associated immune mechanisms, aiming to provide a basis for probing into the molecular mechanisms by which Hhs.015 enhances the disease resistance of plants. [Methods] The protein elicitors capable of inducing the immune responses of plants were screened based on the HR and reactive oxygen species (ROS) levels. A prokaryotic expression system was used to purify the proteins. Furthermore, we verified the roles of the protein elicitors in inducing plant disease resistance by observing the disease spots, measuring the activities of defense-related enzymes, and analyzing the expression of defense genes. Additionally, we treated Arabidopsis thaliana seedlings with the protein elicitors to evaluate the plant growth-promoting effects of the elicitors. [Results] The protein elicitors HSyp1 and HSyp2 from Hhs.015 that could induce a HR, callose and ROS deposition, and upregulation of defense genes in N.benthamiana, were screened and found to be soluble. HSyp1 and HSyp2 enhanced the resistance of different plants to Sclerotinia sclerotiorum, Phytophthora capsica, and Valsa mali. Furthermore, HSyp1 and HSyp2 promoted the cotyledon and root development of A. thaliana seedlings, and HSyp2 exhibited stronger plant growth-promoting effect than HSyp1. [Conclusion] This study identified two protein elicitors HSyp1 and HSyp2 capable of triggering immune responses, enhance disease resistance, and promoting growth of plants. The findings provide a theoretical basis for the development of new biocontrol agents and offer experimental evidence for their future field application.

    参考文献
    [1] JONES JD, DANGL JL. The plant immune system[J]. Nature, 2006, 444(7117): 323-329.
    [2] CHISHOLM ST, COAKER G, DAY B, STASKAWICZ BJ. Host-microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4): 803-814.
    [3] 刘冬. 激发子及其诱导的植物免疫反应概述[J]. 生物学教学, 2021, 46(9): 21-23. LIU D. Summary of elicitor and its induced plant immune response[J]. Biology Teaching, 2021, 46(9): 21-23(in Chinese).
    [4] SUN YB, REN XY, GUO WH, WANG Y, YAN H, HAN LR, FENG JT. Protein elicitor GP1pro targets aquaporin NbPIP2;4 to activate plant immunity[J]. Plant, Cell & Environment, 2023, 46(8): 2575-2589.
    [5] LI Z, ZHANG Y, REN J, JIA FL, ZENG HM, LI GY, YANG XF. Ethylene-responsive factor ERF114 mediates fungal pathogen effector PevD1-induced disease resistance in Arabidopsis thaliana[J]. Molecular Plant Pathology, 2022, 23(6): 819-831.
    [6] WANG HQ, YANG XF, GUO LH, ZENG HM, QIU DW. PeBL1, a novel protein elicitor from Brevibacillus laterosporus strain A60, activates defense responses and systemic resistance in Nicotiana benthamiana[J]. Applied and Environmental Microbiology, 2015, 81(8): 2706-2716.
    [7] 王心选. 植物内生放线菌Hhs.015(BARR1−5)的鉴定及发酵条件优化[D]. 杨凌: 西北农林科技大学硕士学位论文, 2009. WANG XX. Studies on identification and optimization of fermentation process of one plant endophytic actinomycetes strain Hhs.015(BAR1−5)[D]. Yangling: Master’s Thesis of Northwest A&F University, 2009(in Chinese).
    [8] 王建勋, 康凤, 孙玲, 颜霞, 黄丽丽. 杨凌糖丝菌Hhs.015拮抗苹果树腐烂病菌转录组分析及抗菌机制探究[J]. 西北农业学报, 2022, 31(1): 105-116. WANG JX, KANG F, SUN L, YAN X, HUANG LL. Transcriptome analysis and antibacterial mechanism of Saccharothrix yanglingensis Hhs.015 antagonistic Valsa mali[J]. Acta Agriculturae Boreali-occidentalis Ainica, 2022, 31(1): 105-116(in Chinese).
    [9] WANG XX, HUANG LL, KANG ZS, BUCHENAUER H, GAO XN. Optimization of the fermentation process of actinomycete strain hhs.015[J]. Journal of Biomedicine & Biotechnology, 2010, 2010: 141876.
    [10] 颜霞, 张亚男, 刘聪, 赵玲云, 郭红梅, 李燕芳, 黄丽丽. 生防菌Hhs.015对苹果枝条皮层内生细菌区系的影响[J]. 果树学报, 2017, 34(9): 1170-1177. YAN X, ZHANG YN, LIU C, ZHAO LY, GUO HM, LI YF. Effect of biocontrol strain Hhs.015 on endophytic bacterial flora of apple trees[J]. Journal of Fruit Science, 2017, 34(9): 1170-1177(in Chinese).
    [11] 范东颖, 赵玲云, 黄丽丽, 颜霞. 生防菌Hhs.015防止苹果腐烂菌侵染寄主的组织学与细胞学研究[J]. 西北农林科技大学学报(自然科学版), 2016, 44(10): 126-132. FAN DY, ZHAO LY, HUANG LL, YAN X. Histological and cytological study on biocontrol stain Hhs.015 in preventing Valsa Mali from infecting host[J]. Journal of Northwest A&F University (Natural Science Edition), 2016, 44(10): 126-132(in Chinese).
    [12] ZHANG YN, YAN X, GUO HM, ZHAO FY, HUANG LL. A novel protein elicitor BAR11 from Saccharothrix yanglingensis Hhs.015 improves plant resistance to pathogens and interacts with catalases as targets[J]. Frontiers in Microbiology, 2018, 9: 700.
    [13] WANG JX, LIU S, REN P, JIA FG, KANG F, WANG RL, XUE RZ, YAN X, HUANG LL. A novel protein elicitor (PeSy1) from Saccharothrix yanglingensis induces plant resistance and interacts with a receptor-like cytoplasmic kinase in Nicotiana benthamiana[J]. Molecular Plant Pathology, 2023, 24(5): 436-451.
    [14] 柳利龙, 张爱琴, 张环, 米永伟, 胡晓芬, 李玉芳. 当归根际土壤中木霉菌的分离鉴定及拮抗作用[J]. 寒旱农业科学, 2024, 3(8): 774-778. LIU LL, ZHANG AQ, ZHANG H, MI YW, HU XF, LI YF. Isolation, identification and antagonism of biocontrol Trichoderma spp. from rhizosphere soil of Angelica sinensis[J]. Journal of Cold-Arid Agricultural Sciences, 2024, 3(8): 774-778(in Chinese).
    [15] 张泽宇, 肖扬, 詹亚斌, 魏雨泉, 徐道清, 李季. 不同营养类型培养基番茄内生细菌群落结构研究[J]. 江苏农业科学, 2023, 51(11): 128-133. ZHANG ZY, XIAO Y, ZHAN YB, WEI YQ, XU DQ, LI J. Study on the community structure of endophytic bacteria in tomato with different nutrient media[J]. Jiangsu Agricultural Sciences, 2023, 51(11): 128-133(in Chinese).
    [16] 马铃铃, 刘念析, 郑宇宏, 厉志, 刘佳, 衣志刚, 董志敏, 王曙明. 大豆灰斑病菌生长和产孢高效培养方法探讨[J]. 大豆科学, 2019, 38(4): 589-596. MA LL, LIU NX, ZHENG YH, LI Z, LIU J, YI ZG, DONG ZM, WANG SM. Study on the high efficiency culture method of growth and sporulation of soybean frogeye leaf spot pathogen[J]. Soybean Science, 2019, 38(4): 589-596(in Chinese).
    [17] FRÍAS M, GONZÁLEZ C, BRITO N. BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host[J]. The New Phytologist, 2011, 192(2): 483-495.
    [18] 李响, 戴懿, 梁鹏, 缪卫国, 郑服丛. 橡胶树白粉菌诱导寄主及非寄主植物产生活性氧积累的研究[J]. 广东农业科学, 2013, 40(9): 68-70, 封2. LI X, DAI Y, LIANG P, MIAO WG, ZHENG FC. Study on the accumulation of active oxygen in host and non-host plants during the infection of Oidium heveae[J]. Guangdong Agricultural Sciences, 2013, 40(9): 68-70, Feng 2(in Chinese).
    [19] 冯星星, 仲念, 万鹏, 罗壮, 曹修春, 董玉玮. 水杨酸和低温复合处理对韭黄品质的影响[J]. 食品安全质量检测学报, 2024, 15(4): 122-130. FENG XX, ZHONG N, WAN P, LUO Z, CAO XC, DONG YW. Effect of salicylic acid and low temperature combined treatment on the quality of leek[J]. Journal of Food Safety & Quality, 2024, 15(4): 122-130(in Chinese).
    [20] 刘泽厚, 李阳, 彭欣媛, 李执, 伍雨, 姜华于, 覃鹏, 蒲至恩. 叶面喷施硒肥对彩色小麦种子活力影响[J]. 四川农业大学学报, 2024, 42(2): 285-295. LIU ZH, LI Y, PENG XY, LI Z, WU Y, JIANG HY, QIN P, PU ZE. Effect of foliar spraying selenium fertilize on seed vigor of colored wheat[J]. Journal of Sichuan Agricultural University, 2024, 42(2): 285-295(in Chinese).
    [21] 简敏菲, 陈玺, 饶丹, 邹勇军, 丛明旸, 阳文静, 刘淑丽. 模拟湿地土壤微塑料暴露下藓类植物的生长和抗氧化酶活的响应特征[J]. 环境科学学报, 2023, 43(9): 377-386. JIAN MF, CHEN X, RAO D, ZOU YJ, CONG MY, YANG WJ, LIU SL. Response characteristics of the growth and antioxidant enzyme activity of mosses under microplastics stress in simulated wetland soils[J]. Acta Scientiae Circumstantiae, 2023, 43(9): 377-386(in Chinese).
    [22] NIKOLOULI K, MOSSIALOS D. Bioactive compounds synthesized by non-ribosomal peptide synthetases and type-I polyketide synthases discovered through genome-mining and metagenomics[J]. Biotechnology Letters, 2012, 34(8): 1393-1403.
    [23] MERROUCHE R, YEKKOUR A, COPPEL Y, BOURAS N, ZITOUNI A, MATHIEU F, SABAOU N. Saccharothrix algeriensis NRRL B-24137, the first non-Streptomyces actinobacterium, produces holomycin after cystine feeding[J]. Archives of Microbiology, 2020, 202(9): 2509-2516.
    [24] GORNIAKOVÁ D, PETŘÍČEK M, KAHOUN D, GRABIC R, ZELENKA T, CHROŇÁKOVÁ A, PETŘÍČKOVÁ K. Activation of a cryptic manumycin-type biosynthetic gene cluster of Saccharothrix espanaensis DSM44229 by series of genetic manipulations[J]. Microorganisms, 2021, 9(3): 559.
    [25] WANG XL, TABUDRAVU J, JASPARS M, DENG H. Tianchimycins A–B, 16-membered macrolides from the rare actinomycete Saccharothrix xinjiangensis[J]. Tetrahedron, 2013, 69(30): 6060-6064.
    [26] BABADI ZK, SUDARMAN E, EBRAHIMIPOUR GH, PRIMAHANA G, STADLER M, WINK J. Structurally diverse metabolites from the rare actinobacterium Saccharothrix xinjiangensis[J]. The Journal of Antibiotics, 2020, 73(1): 48-55.
    [27] ANNAMALAI N, RAJESWARI MV, BALASUBRAMANIAN T. Microbial Enzymes in Bioconversions of Biomass[M]. Cham: Springer International Publishing, 2016.
    [28] 程斐, 孙朝晖, 赵玉国, 谢平林, 李式军. 高温分解纤维素的易变糖丝菌菌株筛选及其特性[J]. 南京农业大学学报, 2002, 25(2): 35-38. CHENG F, SUN ZH, ZHAO YG, XIE PL, LI SJ. Isolation of efficiency decomposing cellulose of Saccharothrix mutabilis[J]. Journal of Nanjing Agricultural University, 2002, 25(2): 35-38(in Chinese).
    [29] 司马晓娇, 郑炳松. 植物生长素原初响应基因Aux/IAA研究进展[J]. 浙江农林大学学报, 2015, 32(2): 313-318. SIMA XJ, ZHENG BS. Advances in primary auxin-responsive Aux/IAA gene family: a review[J]. Journal of Zhejiang A&F University, 2015, 32(2): 313-318(in Chinese).
    [30] 孙涛, 柴团耀, 刘戈宇, 张玉秀. 植物GH3基因家族研究进展[J]. 生物工程学报, 2008, 24(11): 1860-1866. SUN T, CHAI TY, LIU GY, ZHANG YX. Progress in the plant GH3 gene family[J]. Chinese Journal of Biotechnology, 2008, 24(11): 1860-1866(in Chinese).
    [31] LUO J, ZHOU JJ, ZHANG JZ. Aux/IAA gene family in plants: molecular structure, regulation, and function[J]. International Journal of Molecular Sciences, 2018, 19(1): 259.
    [32] LUSCHNIG C, GAXIOLA RA, GRISAFI P, FINK GR. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana[J]. Genes & Development, 1998, 12(14): 2175-2187.
    [33] KUBALOVÁ M, MÜLLER K, DOBREV PI, RIZZA A, JONES AM, FENDRYCH M. Auxin co-receptor IAA17/AXR3 controls cell elongation in Arabidopsis thaliana root solely by modulation of nuclear auxin pathway[J]. The New Phytologist, 2024, 241(6): 2448-2463.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

于洪佳,张家阳,王平平,崔传斌,颜霞,黄丽丽. 杨凌糖丝菌蛋白激发子HSyp1和HSyp2诱导植物抗病功能[J]. 微生物学报, 2025, 65(1): 268-282

复制
分享
文章指标
  • 点击次数:146
  • 下载次数: 286
  • HTML阅读次数: 200
  • 引用次数: 0
历史
  • 收稿日期:2024-07-30
  • 在线发布日期: 2025-01-04
  • 出版日期: 2025-01-04
文章二维码