微嗜酸寡养单胞菌中的漆酶对黄曲霉毒素B1降解脱毒的生物活性
作者:
基金项目:

国家自然科学基金(31671949);安徽省杰出青年基金(1608085J08);国家重点研发计划(2017YFC1600902)


Characterization of the aflatoxin B1 degradation role of laccases in Stenotrophomonas acidaminiphila
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 探究微嗜酸寡养单胞菌中的漆酶对AFB1的降解活性,并确定漆酶在菌株CW117降解代谢AFB1过程中的贡献。[方法] 从微嗜酸寡养单胞菌基因组中,共筛选到两个漆酶基因lc1lc2,并用大肠杆菌BL21外源表达蛋白rLC1和rLC2,在体外检测其对AFB1的降解活性。同时参考前人报道,研究了氧化性辅剂对漆酶AFB1降解的促进作用。在体外实验基础上,利用自杀质粒pK18mobsacB,以同源重组方法构建了两株漆酶缺失株CW117lc1和CW117lc1-lc2,验证了漆酶基因(lc1lc2)对AFB1体内降解作用。[结果] 体外实验显示,重组酶rLC1具有AFB1降解活性,氧化性辅剂ABTS、AS或SA可显著地提高rLC1降解活性,但rLC2未显示降解活性。突变株CW117lc1和CW117lc1-lc2对AFB1仍显示了较高的降解活性,且在大多数降解时间点与野生株CW117无显著差异。[结论] 微嗜酸寡养单胞菌CW117菌株中,LC1在体外显示了AFB1的降解活性,且降解活性可以被氧化性辅助因子增强,LC2未显示体外降解活性;体内试验发现,漆酶基因lc1lc2对菌株CW117降解AFB1的贡献较小,该菌株还存在其他降解途径。

    Abstract:

    [Objective] Characterization of the aflatoxin B1 (AFB1) degradation roles of the laccases screened from Stenotrophomonas acidaminiphila CW117. [Methods] Two laccase genes lc1 and lc2 from strain CW117 genome were screened, and their AFB1 degrading activity was examined in vitro by heterologous expressed proteins of rLC1 and rLC2 in E. coli BL21. On the basis of in vitro test, two laccase-deficient strains CW117lc1 and CW117lc1-lc2 were constructed by homologous recombination method by using suicide plasmid pK18mobsacB, and the laccases (lc1 and lc2) AFB1 degradation role on strain CW117 was validation in vivo. [Results] Laccase rLC1 showed the AFB1 degradation activity in vitro, but rLC2 did not show degradation activity. Degradation activity of rLC1 was improved by redox mediators of 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid), acetosyringone or syringaldehyde. The degrading activity of mutants CW117lc1 and CW117lc1-lc2 showed similar degradation activity to the wild-type strain CW117 in most evaluation time-points. [Conclusion] Laccase LC1 from S. acidaminiphila showed AFB1 degradation activity, and the degradation activity could be enhanced by redox mediators as previous study. However, the laccases’ contribution to AFB1 degradation in strain CW117 was minimal, and other degradation pathways existed in the strain.

    参考文献
    [1] Wogan GN. Chemical nature and biological effects of the aflatoxins. Bacteriology Reviews, 1966, 30(2):460-470.
    [2] Karlovsky P. Biological detoxification of fungal toxins and its use in plant breeding, feed and food production. Natural Toxins, 1999, 7(1):1-23.
    [3] Mishra HN, Das C. A review on biological control and metabolism of aflatoxin. Critical Reviews in Food Science and Nutrition, 2003, 43(3):245-264.
    [4] Liu DL, Yao DS, Liang YQ, Zhou TH, Song YP, Zhao L, Ma L. Production, purification, and characterization of an intracellular aflatoxin-detoxifizyme from Armillariella tabescens (E-20). Food and Chemical Toxicology, 2001, 39(5):461-466.
    [5] Cao H, Liu DL, Mo XM, Xie CF, Yao DS. A fungal enzyme with the ability of aflatoxin B1 conversion:Purification and ESI-MS/MS identification. Microbiological Research, 2011, 166(6):475-483.
    [6] Xu TT, Xie CF, Yao DS, Zhou CZ, Liu JS. Crystal structures of Aflatoxin-oxidase from Armillariella tabescens reveal a dual activity enzyme. Biochemical and Biophysical Research Communications, 2017, 494(3/4):621-625.
    [7] Motomura M, Toyomasu T, Mizuno K, Shinozawa T. Purification and characterization of an aflatoxin degradation enzyme from Pleurotus ostreatus. Microbiological Research, 2003, 158(3):237-242.
    [8] Altalhi AD. Plasmid-mediated detoxification of mycotoxin zearalenone in Pseudomonas sp. ZEA-1. American Journal of Biochemistry and Biotechnology, 2007, 3(3):150-158.
    [9] Farzaneh M, Shi ZQ, Ghassempour A, Sedaghat N, Ahmadzadeh M, Mirabolfathy M, Javan-Nikkhah M. Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control, 2012, 23(1):100-106.
    [10] Petchkongkaew A, Taillandier P, Gasaluck P, Lebrihi A. Isolation of Bacillus spp. from Thai fermented soybean (Thua-nao):screening for aflatoxin B1 and ochratoxin A detoxification. Journal of Applied Microbiology, 2008, 104(5):1495-1502.
    [11] Xu L, Eisa Ahmed MF, Sangare L, Zhao YJ, Selvaraj JN, Xing FG, Wang Y, Yang HP, Liu Y. Novel aflatoxin-degrading enzyme from Bacillus shackletonii L7. Toxins, 2017, 9(1):36.
    [12] Line JE, Brackett RE, Wilkinson RE. Evidence for degradation of aflatoxin B1 by Flavobacterium aurantiacum. Journal of Food Protection, 1994, 57(9):788-791.
    [13] Smiley RD, Draughon FA. Preliminary evidence that degradation of aflatoxin B1 by Flavobacterium aurantiacum is enzymatic. Journal of Food Protection, 2000, 63(3):415-418.
    [14] Hormisch D, Hormisch D, Brost I, Kohring GW, Giffhorn F, Kroppenstedt RM, Stackebrandt E, Färber P, Holzapfel WH. Mycobacterium fluoranthenivorans sp. nov., a fluoranthene and aflatoxin B1 degrading bacterium from contaminated soil of a former coal gas plant. Systematic and Applied Microbiology, 2004, 27(6):653-660.
    [15] Teniola OD, Addo PA, Brost IM, Färberc P, Jany KD, Alberts JF, van Zyl WH, Steyn PS, Holzapfelc WH. Degradation of aflatoxin B1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. DSM44556T. International Journal of Food Microbiology, 2005, 105(2):111-117.
    [16] Alberts JF, Engelbrecht Y, Steyn PS, Holzapfel WH, Van Zyl WH. Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures. International Journal of Food Microbiology, 2006, 109(1/2):121-126.
    [17] Kong Q, Zhai CP, Guan B, Li CJ, Shan SH, Yu JJ. Mathematic modeling for optimum conditions on aflatoxin B1 degradation by the aerobic bacterium Rhodococcus erythropolis. Toxins, 2012, 4(11):1181-1195.
    [18] Guan S, Ji C, Zhou T, Li JX, Ma QG, Niu TG. Aflatoxin B1 degradation by Stenotrophomonas maltophilia and other microbes selected using coumarin medium. International Journal of Molecular Sciences, 2008, 9(8):1489-1503.
    [19] Yehia RS. Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus. Brazilian Journal of Microbiology, 2014, 45(1):127-134.
    [20] Taylor MC, Jackson CJ, Tattersall DB, French N, Peat TS, Newman J, Briggs LJ, Lapalikar GV, Campbell PM, Scott C, Russell RJ, Oakeshott JG. Identification and characterization of two families of F420H2-dependent reductases from Mycobacteria that catalyse aflatoxin degradation. Molecular Microbiology, 2010, 78(3):561-575.
    [21] Loi M, Fanelli F, Zucca P, Liuzzi VC, Quintieri L, Cimmarusti MT, Monaci L, Haidukowski M, Logrieco AF, Sanjust E, Mulè G. Aflatoxin B1 and M1 degradation by Lac2 from Pleurotus pulmonarius and redox mediators. Toxins, 2016, 8(9):245.
    [22] Branà MT, Cimmarusti MT, Haidukowski M, Logrieco AF, Altomare C. Bioremediation of aflatoxin B1-contaminated maize by king oyster mushroom (Pleurotus eryngii). PLoS One, 2017, 12(8):e0182574.
    [23] Loi M, Fanelli F, Cimmarusti MT, Mirabelli V, Haidukowski M, Logrieco AF, Caliandro R, Mule G. In vitro single and combined mycotoxins degradation by Ery4 laccase from Pleurotus eryngii and redox mediators. Food Control, 2018, 90:401-406.
    [24] Alexandre G, Zhulin IB. Laccases are widespread in bacteria. Trends in Biotechnology, 2000, 18(2):41-42.
    [25] Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. The FEBS Journal, 2006, 273(10):2308-2326.
    [26] Alberts JF, Gelderblom WCA, Botha A, Van Zyl WH. Degradation of aflatoxin B1 by fungal laccase enzymes. International Journal of Food Microbiology, 2009, 135(1):47-52.
    [27] Claus H. Laccases:structure, reactions, distribution. Micron, 2004, 35(1/2):93-96.
    [28] Dellafiora L, Galaverna G, Reverberi M, Dall'Asta C. Degradation of aflatoxins by means of laccases from Trametes versicolor:an in silico insight. Toxins, 2017, 9(1):17.
    [29] Zeinvand-Lorestani H, Sabzevari O, Setayesh N, Amini M, Nili-Ahmadabadi A, Faramarzi MA. Comparative study of in vitro prooxidative properties and genotoxicity induced by aflatoxin B1 and its laccase-mediated detoxification products. Chemosphere, 2015, 135:1-6.
    [30] Cai MY, QianYY, Chen N, Ling TJ, Wang JJ, Jiang H, Wang X, Qi KZ, Zhou Y. Detoxification of aflatoxin B1 by Stenotrophomonas sp. CW117 and characterization the thermophilic degradation process. Environmental Pollution, 2020, 261:114178.
    [31] Pace CN, Vajdos F, Fee L, Grimsley G, Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Science, 1995, 4(11):2411-2423.
    [32] Mwakinyali SE, Ming Z, Xie HL, Zhang Q, Li PW. Investigation and characterization of Myroides odoratimimusstrain 3J2MO aflatoxin B1 degradation. Journal of Agricultural and Food Chemistry, 2019, 67(16):4595-4602.
    [33] Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19:selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene, 1994, 145(1):69-73.
    [34] Sun J, Qian SQ, Lu J, Liu Y, Lu FX, Bie XM, Lu ZX. Knockout of rapC improves the bacillomycin D yield based on de novo genome sequencing of Bacillus amyloliquefaciens fmbJ. Journal of Agricultural and Food Chemistry, 2018, 66(17):4422-4430.
    [35] Wang D, Xue HY, Wang YW, Yin RC, Xie F, Luo L. The Sinorhizobium meliloti ntrX gene is involved in succinoglycan production, motility, and symbiotic nodulation on alfalfa. Applied and Environmental Microbiology, 2013, 79(23):7150-7159.
    [36] Sheng YL, Mancino V, Birren B. Transformation of Escherichia coli with large DNA molecules by electroporation. Nucleic Acids Research, 1995, 23(11):1990-1996.
    [37] Shu X, Wang YT, Zhou Q, Li MH, Hu H, Ma YH, Chen X, Ni J, Zhao WW, Huang SW, Wu LF. Biological degradation of aflatoxin B1 by cell-free extracts of Bacillus velezensis DY3108 with broad PH stability and excellent thermostability. Toxins, 2018, 10(8):330.
    [38] Li JL, Huang J, Jin Y, Wu CD, Shen DZ, Zhang SY, Zhou RQ. Mechanism and kinetics of degrading aflatoxin B1 by salt tolerant Candida versatilis CGMCC 3790. Journal of Hazardous Materials, 2018, 359:382-387.
    [39] Li JL, Huang J, Jin Y, Wu CD, Shen DZ, Zhang SY, Zhou RQ. Aflatoxin B1 degradation by salt tolerant Tetragenococcus halophilus CGMCC 3792. Food and Chemical Toxicology, 2018, 121:430-436.
    [40] Harighi B. Genetic evidence for CheB-and CheR-dependent chemotaxis system in A. tumefaciens toward acetosyringone. Microbiological Research, 2009, 164(6):634-641.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姜宏,杜郑君,钱莺莺,陈楠,蔡梦宇,费晴如,陈静静,周育. 微嗜酸寡养单胞菌中的漆酶对黄曲霉毒素B1降解脱毒的生物活性[J]. 微生物学报, 2021, 61(1): 127-140

复制
分享
文章指标
  • 点击次数:598
  • 下载次数: 1036
  • HTML阅读次数: 1174
  • 引用次数: 0
历史
  • 收稿日期:2020-03-07
  • 最后修改日期:2020-03-28
  • 在线发布日期: 2021-01-12
文章二维码