真菌中G蛋白信号调控因子蛋白类型与其理化性质的关系
作者:
基金项目:

云南省应用基础研究计划(2018FG001-028);国家自然科学基金(31960314);西南林业大学大学生创新创业项目(2018Y012)


Relationship between RGS protein types and physicochemical properties in fungi
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] G蛋白信号调控因子(RGS)作为G蛋白信号转导途径的负调控因子,在植物病原菌的致病性和有性生殖调控方面发挥着重要作用。研究真菌中RGS蛋白类型与其理化性质及特征的关系,为今后深入开展不同真菌中具有不同类别RGS的功能解析打下坚实的理论基础。[方法] 前期对模式生物、病原菌、非致病菌等49个真菌中229个RGS蛋白序列进行找寻,并根据其保守结构域和同源性确定RGS类型有DEP-RGS、RGS-TM、PXA-RGS-PX、RGS、RGS-PAS-PAC、TM-RGS等6类。利用蛋白质数据库、ProtComp v9.0、PHD以及MEME等网站对上述RGS蛋白进行理化性质、亚细胞定位以及二级结构、基序等特征分析。[结果] 上述不同类别的RGS蛋白具有明显的类别特征性,同时,也具有以下共同特征:理论等电点集中在6.01-7.00;不稳定性系数集中在40.01-60.00;95%以上的RGS蛋白属于亲水性蛋白;亲水性最强氨基酸残基存在较多的是R、D、E、Q、N;疏水性最强氨基酸残基存在较多的L、A、V、F、I;二级结构组成特征为b折叠较少;转运肽情况尚未明确;亚细胞定位多集中在细胞核。[结论] 真菌中6类RGS蛋白的理化性质具有一定的共同特征,但不同类别的RGS蛋白也具有明显的类别特征,主要表现在保守结构域、二级结构、等电点、转运肽和亚细胞定位情况。

    Abstract:

    [Objective] As a negative regulator of G protein signal transduction pathway, G protein signal regulator factor plays an important role in the pathogenicity asexual reproduction regulation of plant pathogens. To identify the relationship between RGS protein types and their physicochemical properties in fungi. [Methods] We analyzed 229 of previously identified RGS protein sequences in 49 fungi including model organism, pathogenic bacteria and non-pathogenic bacteria, and identified 6 proteins according to their conserved domains, such as DEP-RGS, RGS-TM, PXA-RGS-PX, RGS, RGS-PAS-PAC and TM-RGS. We used the protein database, ProtComp v9.0, PHD and MEME to analyze the physicochemical properties, subcellular localization, secondary structure and motif of the above RGS proteins. [Results] The above-mentioned different types of RGS proteins had obvious characteristic futures, and following common characteristics: theoretical isoelectric point was between 6.01 and 7.00, instability coefficients were between 40.01 and 60.00, more than 95% of RGS proteins were hydrophilic protein, the strongest hydrophilic amino acid residues were arginine, aspartic acid, glutamic acid, glutamine, asparagine, the strongest hydrophobic amino acid residues were leucine, alanine, valine, phenylalanine, isoleucine, the secondary structure was characterized by less Beta strand, situation for the transit peptide situation is unclear, and subcellular location is more concentrated in the nucleus. [Conclusion] The physicochemical properties of the six RGS proteins have some common characteristics, but different types of RGS proteins also have obvious category characteristics, mainly in the conserved domain, secondary structure, isoelectric point, transport peptide and subcellular localization.

    参考文献
    [1] Han CZ, Yang B. Mapping and bioinformatics analysis on G protein signaling pathway related protein of Colletotrichum graminicola. Beijing:Science Press, 2016. (in Chinese)韩长志, 杨斌. G蛋白信号途径相关蛋白生物信息学:以禾谷炭疽菌为例. 北京:科学出版社, 2016.
    [2] Ross EM, Wilkie TM. GTPase-activating proteins for heterotrimeric G proteins:regulators of G protein signaling (RGS) and RGS-like proteins. Annual Review of Biochemistry, 2000, 69:795-827.
    [3] Asli A, Sadiya I, Avital-Shacham M, Kosloff M. "Disruptor" residues in the regulator of G protein signaling (RGS) R12 subfamily attenuate the inactivation of Gα subunits. Science Signaling, 2018, 11(534):eaan3677.
    [4] Alqinyah M, Hooks SB. Regulating the regulators:epigenetic, transcriptional, and post-translational regulation of RGS proteins. Cellular Signalling, 2018, 42:77-87.
    [5] McPherson KB, Leff ER, Li MH, Meurice C, Tai S, Traynor JR, Ingram SL. Regulators of g-protein signaling (RGS) proteins promote receptor coupling to g-protein-coupled inwardly rectifying potassium (GIRK) channels. The Journal of Neuroscience, 2018, 38(41):8737-8744.
    [6] Abramow-Newerly M, Roy AA, Nunn C, Chidiac P. RGS proteins have a signalling complex:interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins. Cellular Signalling, 2006, 18(5):579-591.
    [7] Dohlman HG, Song J, Ma D, Courchesne WE, Thorner J. Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae:expression, localization, and genetic interaction and physical association with Gpa1(the G-protein alpha subunit). Molecular and Cellular Biology, 1996, 16(9):5194-5209.
    [8] Wang YC, Geng ZY, Jiang DW, Long FF, Zhao Y, Su H, Zhang KQ, Yang JK. Characterizations and functions of regulator of G protein signaling (RGS) in fungi. Applied Microbiology and Biotechnology, 2013, 97(18):7977-7987.
    [9] Yu JH. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. Journal of Microbiology, 2006, 44(2):145-154.
    [10] Yu JH, Wieser J, Adams TH. The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. The EMBO Journal, 1996, 15(19):5184-5190.
    [11] Han KH, Seo JA, Yu JH. Regulators of G-protein signalling in Aspergillus nidulans:RgsA downregulates stress response and stimulates asexual sporulation through attenuation of GanB (Gα) signalling. Molecular Microbiology, 2004, 53(2):529-540.
    [12] Zhang HF, Tang W, Liu KY, Huang Q, Zhang X, Yan X, Chen Y, Wang JS, Qi ZQ, Wang ZY, Zheng XB, Wang P, Zhang ZG. Correction:eight RGS and RGS-like proteins orchestrate growth, differentiation, and pathogenicity of Magnaporthe oryzae. PLoS Pathogens, 2019, 15(11):e1008187.
    [13] 韩秀秀. 受COS1转录调控的稻瘟病菌基因RGS1CMR1的功能鉴定. 海南大学硕士学位论文, 2013.
    [14] 乐鑫怡. 稻瘟病菌RGS家族蛋白RGS结构域的功能解析及Dynamin家族蛋白MoDnm2、MoDnm3的生物学功能研究. 南京农业大学硕士学位论文, 2017.
    [15] Mukherjee M, Kim JE, Park YS, Kolomiets MV, Shim WB. Regulators of G-protein signalling in Fusarium verticillioides mediate differential host-pathogen responses on nonviable versus viable maize kernels. Molecular Plant Pathology, 2011, 12(5):479-491.
    [16] Park AR, Cho AR, Seo JA, Min K, Son H, Lee J, Choi GJ, Kim JC, Lee YW. Functional analyses of regulators of G protein signaling in Gibberella zeae. Fungal Genetics and Biology, 2012, 49(7):511-520.
    [17] Wang P, Cutler J, King J, Palmer D. Mutation of the regulator of G protein signaling Crg1 increases virulence in Cryptococcus neoformans. Eukaryotic Cell, 2004, 3(4):1028-1035.
    [18] Han CZ. Bioinformatics analysis on regulators of G-protein signaling in Colletotrichum graminicola. Microbiology China, 2014, 41(8):1582-1594. (in Chinese)韩长志. 禾谷炭疽菌RGS蛋白生物信息学分析. 微生物学通报, 2014, 41(8):1582-1594.
    [19] Han CZ. Bioinformatics analysis on regulators of G-protein signaling in Colletotrichum higginsianum. Biotechnology, 2014, 24(1):36-41. (in Chinese)韩长志. 希金斯炭疽菌RGS蛋白生物信息学分析. 生物技术, 2014, 24(1):36-41.
    [20] 吴曼莉. 橡胶树胶孢炭疽菌G蛋白信号调控因子CgRGS1、CgRGS2和CgRGS7的克隆及生物学功能. 海南大学硕士学位论文, 2017.
    [21] Wu ML, Li XY, Zhang N, Xu S, Liu ZQ. Gene cloning and biological function of CgRGS2 in Colletotrichum gloeosporioides. Acta Microbiologica Sinica, 2017, 57(1):66-76. (in Chinese)吴曼莉, 李晓宇, 张楠, 徐爽, 柳志强. 胶孢炭疽菌CgRGS2基因的克隆及生物学功能. 微生物学报, 2017, 57(1):66-76.
    [22] Xu S, Ke ZJ, Zhang K, Liu ZQ, Li XY. Biological function of a regulator of G-protein signaling CgRGS3 in Colletotrichum gloeosporioides. Acta Phytophylacica Sinica, 2018, 45(4):827-835. (in Chinese)徐爽, 柯智健, 张凯, 柳志强, 李晓宇. 胶孢炭疽菌G蛋白信号调控因子CgRGS3的生物学功能. 植物保护学报, 2018, 45(4):827-835.
    [23] Choi YH, Lee MW, Igbalajobi OA, Yu JH, Shin KS. Transcriptomic and functional studies of the RGS protein rax1 in Aspergillus fumigatus. Pathogens, 2020, 9(1):36.
    [24] Zheng B, De Vries L, Farquhar MG. Divergence of RGS proteins:evidence for the existence of six mammalian RGS subfamilies. Trends in Biochemical Sciences, 1999, 24(11):411-414.
    [25] Zhao Y, Wang YC, Jiang DW, Su H, Yang JK. Advances in functional research of RGS proteins in fungi. Microbiology China, 2014, 41(4):712-718. (in Chinese)赵勇, 王云川, 蒋德伟, 苏浩, 杨金奎. 真菌G蛋白信号调控蛋白的功能研究进展. 微生物学通报, 2014, 41(4):712-718.
    [26] Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF. Protein identification and analysis tools in the ExPASy server//Link AJ. 2-D Proteome Analysis Protocols. Totowa:Humana Press, 1999:531-552.
    [27] Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 2015, 10(6):845-858.
    [28] Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols, 2007, 2(4):953-971.
    [29] Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren JY, Li WW, Noble WS. MEME SUITE:tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(S2):W202-W208.
    [30] Salem-Mansour D, Asli A, Avital-Shacham M, Kosloff M. Structural motifs in the RGS RZ subfamily combine to attenuate interactions with Gα subunits. Biochemical and Biophysical Research Communications, 2018, 503(4):2736-2741.
    [31] Lou F, Abramyan TM, Jia HY, Tropsha A, Jones AM. An atypical heterotrimeric Gα protein has substantially reduced nucleotide binding but retains nucleotide-independent interactions with its cognate RGS protein and Gβγ dimer. Journal of Biomolecular Structure and Dynamics, 2019, doi:10.1080/07391102.2019.1704879.
    [32] Han CZ, Xu X. Advance in functional research of secreted protein and CAZymes in plant pathogenic filamentous fungus. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(5):152-160. (in Chinese)韩长志, 许僖. 植物病原丝状真菌分泌蛋白及CAZymes的研究进展. 南京林业大学学报(自然科学版), 2017, 41(5):152-160.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

祝友朋,韩长志. 真菌中G蛋白信号调控因子蛋白类型与其理化性质的关系[J]. 微生物学报, 2021, 61(1): 195-205

复制
分享
文章指标
  • 点击次数:457
  • 下载次数: 1911
  • HTML阅读次数: 2198
  • 引用次数: 0
历史
  • 收稿日期:2020-03-16
  • 最后修改日期:2020-06-17
  • 在线发布日期: 2021-01-12
文章二维码