小分子功能化的金纳米粒子对革兰氏阴性多药耐药细菌的抗菌特性
作者:
基金项目:

西南医科大学科研基金(2019ZZD018);国家自然科学基金(21974019)


Antibacterial properties of small molecule-functionalized gold nanoparticles against Gram-negative multidrug-resistant bacteria
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 研究大肠杆菌tRNA合成底物类似物4,6-二氨基-2-巯基嘧啶功能化的金纳米粒子(gold nanoparticles,AuNPs)对革兰氏阴性多药耐药细菌的抗菌特性。[方法] 以4,6-二氨基-2-巯基嘧啶为表面配体合成AuNPs,采用肉汤稀释法测定其对4种临床分离的革兰氏阴性多药耐药细菌的最低抑菌浓度(MIC)。通过不同浓度AuNPs处理后经平板计数绘制不同菌株的时间-杀菌动力学曲线。以铜绿假单胞菌为代表菌株,采用激光共聚焦显微镜、透射电子显微镜和凝胶电泳分析AuNPs对细菌细胞组分的损伤。通过亚致死浓度反复诱导评估细菌对AuNPs的耐药性演化。并以MTT实验初步评估了AuNPs对哺乳动物细胞的生物相容性。[结果] 4,6-二氨基-2-巯基嘧啶介导的AuNPs平均粒径为6.8 nm,zeta电位为+38.4 mV。该AuNPs对4种临床分离的革兰氏阴性多药耐药细菌均表现出时间和浓度依赖的抗菌活性,MIC值介于4-8 μg/mL之间。抗菌机制研究显示AuNPs主要通过诱导细菌细胞膜损伤和DNA断裂导致细菌死亡。耐药性演化评估发现细菌在为期30 d的反复诱导下也基本不会对该AuNPs产生耐药性。细胞毒性结果显示AuNPs对哺乳动物细胞具有良好的生物相容性,在浓度达到256 μg/mL时正常肝细胞L02和正常肺细胞AT II的存活率仍高达85%以上。[结论] 小分子介导的AuNPs对临床分离的革兰氏阴性多药耐药细菌具有较好的抗菌活性,在应对当前严峻的多药耐药细菌感染方面具有潜在的应用价值。

    Abstract:

    [Objective] In this study, we investigated the antibacterial properties of 4,6-diamino-2mercaptopyrimidine-functionalized gold nanoparticles (AuNPs) against Gram-negative multidrug-resistant (MDR) bacteria. [Methods] Minimum inhibitory concentration (MIC) of AuNPs against 4 clinically isolated Gram-negative MDR bacteria was determined by the broth dilution method. Time-kill curves within 24 h were drawn by plate counting after treatment with different concentrations of AuNPs. Employing Pseudomonas aeruginosa as a representative strain, the damage of AuNPs to bacterial cell components was studied using laser scanning confocal microscopy, transmission electron microscopy, and gel electrophoresis. The evolution of potential drug resistance of bacteria to AuNPs was evaluated by repeatedly exposed to AuNPs at a sublethal concentration. The biocompatibility of AuNPs to mammalian cells was evaluated by MTT analysis. [Results] The average size of synthesized AuNPs was 6.8 nm, and the zeta potential was +38.4 mV. The AuNPs showed timeand concentration-dependent antibacterial activity against the 4 Gram-negative MDR bacteria, with MIC values ranging from 4 to 8 μg/mL. The AuNPs killed these MDR bacteria through a combined mechanism including cell membrane destruction and DNA damage. No resistance development toward the AuNPs was demonstrated even after continuous passage for 30 d. Preliminary cytotoxicity assay results showed that AuNPs have excellent biocompatibility to mammalian cells, and the survival rate of normal L02 liver cells and normal AT II lung cells is still more than 85% when the concentration reaches 256 μg/mL. [Conclusion] Small molecule-mediated AuNPs have excellent antibacterial activity against Gram-negative MDR bacteria, and potential application value in dealing with severe MDR bacterial infection.

    参考文献
    [1] Zumla A, Memish ZA, Maeurer M, Bates M, Mwaba P, Al-Tawfiq JA, Denning DW, Hayden FG, Hui DS. Emerging novel and antimicrobial-resistant respiratory tract infections:new drug development and therapeutic options. The Lancet Infectious Diseases, 2014, 14(11):1136-1149.
    [2] Wang J, Wang XH, Xu H. Antimicrobial resistance and dissemination of multidrug resistant organisms-A review. Acta Microbiologica Sinica, 2016, 56(11):1671-1679. (in Chinese) 王娟, 王新华, 徐海. 多重耐药菌在人类、动物和环境的耐药和传播机制. 微生物学报, 2016, 56(11):1671-1679.
    [3] de Kraker MEA, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Medicine, 2016, 13(11):e1002184.
    [4] Lam SJ, O'Brien-Simpson NM, Pantarat N, Sulistio A, Wong EHH, Chen YY, Lenzo JC, Holden JA, Blencowe A, Reynolds EC, Qiao GG. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nature Microbiology, 2016, 1(11):16162.
    [5] Levy SB, Marshall B. Antibacterial resistance worldwide:causes, challenges and responses. Nature Medicine, 2004, 10(12):S122-S129.
    [6] Chen XQ, Jiang JX, Ren ZH, Li J, Zhang HY, Xu JG, Du HM. Antibacterial activity of silver nanoparticles against multiple drug resistant strains. Acta Microbiologica Sinica, 2017, 57(4):539-549. (in Chinese) 陈学情, 蒋家璇, 任志鸿, 李娟, 张红英, 徐建国, 杜华茂. 纳米银的抗菌特性及对多重耐药菌株的抗菌作用. 微生物学报, 2017, 57(4):539-549.
    [7] Huh AJ, Kwon YJ. "Nanoantibiotics":a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 2011, 156(2):128-145.
    [8] Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM. Combatting antibiotic-resistant bacteria using nanomaterials. Chemical Society Reviews, 2019, 48(2):415-427.
    [9] Yang X, Yang MX, Pang B, Vara M, Xia YN. Gold nanomaterials at work in biomedicine. Chemical Reviews, 2015, 115(19):10410-10488.
    [10] Miller KP, Wang L, Benicewicz BC, Decho AW. Inorganic nanoparticles engineered to attack bacteria. Chemical Society Reviews, 2015, 44(21):7787-7807.
    [11] Xie YZY, Liu Y, Yang JC, Liu Y, Hu FP, Zhu K, Jiang XY. Gold Nanoclusters for targeting methicillin-resistant Staphylococcus aureus in vivo. Angewandte Chemie International Edition, 2018, 57(15):3958-3962.
    [12] Li XN, Robinson SM, Gupta A, Saha K, Jiang ZW, Moyano DF, Sahar A, Riley MA, Rotello VM. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano, 2014, 8(10):10682-10686.
    [13] Yang P, Pageni P, Rahman MA, Bam M, Zhu TY, Chen YP, Nagarkatti M, Decho AW, Tang CB. Gold nanoparticles with antibiotic-metallopolymers toward broad-spectrum antibacterial effects. Advanced Healthcare Materials, 2019, 8(6):1800854.
    [14] Zhao YQ, Sun YJ, Zhang YD, Ding XK, Zhao NN, Yu BR, Zhao H, Duan S, Xu FJ. Well-defined gold nanorod/polymer hybrid coating with inherent antifouling and photothermal bactericidal properties for treating an infected hernia. ACS Nano, 2020, 14(2):2265-2275.
    [15] Zheng YK, Liu WW, Qin ZJ, Chen Y, Jiang H, Wang XM. Mercaptopyrimidine-conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs. Bioconjugate Chemistry, 2018, 29(9):3094-3103.
    [16] Yang XL, Yang JC, Wang L, Ran B, Jia YX, Zhang LM, Yang G, Shao HW, Jiang XY. Pharmaceutical intermediate-modified gold nanoparticles:against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano, 2017, 11(6):5737-5745.
    [17] Zhang JJ, Mou L, Jiang XY. Surface chemistry of gold nanoparticles for health-related applications. Chemical Science, 2020, 11(4):923-936.
    [18] Zhao YY, Ye CJ, Liu WW, Chen R, Jiang XY. Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angewandte Chemie International Edition, 2014, 53(31):8127-8131.
    [19] Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 2008, 3(2):163-175.
    [20] Li SH, Wang ZJ, Wei YF, Wu CY, Gao SP, Jiang H, Zhao XQ, Yan H, Wang XM. Antimicrobial activity of a ferrocene-substituted carborane derivative targeting multidrug-resistant infection. Biomaterials, 2013, 34(4):902-911.
    [21] Zheng YK, Liu WW, Chen Y, Jiang H, Yan H, Kosenko I, Chekulaeva L, Sivaev I, Bregadze V, Wang XM. A highly potent antibacterial agent targeting methicillin-resistant Staphylococcus aureus based on cobalt bis(1,2-dicarbollide) alkoxy derivative. Organometallics, 2017, 36(18):3484-3490.
    [22] Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J. Bad bugs, no drugs:no ESKAPE! An update from the Infectious Diseases Society of America. Clinical Infectious Diseases, 2009, 48(1):1-12.
    [23] Xia MY, Xie Y, Yu CH, Chen GY, Li YH, Zhang T, Peng Q. Graphene-based nanomaterials:the promising active agents for antibiotics-independent antibacterial applications. Journal of Controlled Release, 2019, 307:16-31.
    [24] Zhao YY, Jiang XY. Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale, 2013, 5(18):8340-8350.
    [25] Zhang XD, Chen XK, Yang JJ, Jia HR, Li YH, Chen Z, Wu FG. Quaternized silicon nanoparticles with polarity-sensitive fluorescence for selectively imaging and killing gram-positive bacteria. Advanced Functional Materials, 2016, 26(33):5958-5970.
    [26] Marrache S, Dhar S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40):16288-16293.
    [27] Zheng KY, Setyawati MI, Leong DT, Xie JP. Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chemistry of Materials, 2018, 30(8):2800-2808.
    [28] Zheng KY, Setyawati MI, Leong DT, Xie JP. Antimicrobial gold nanoclusters. ACS Nano, 2017, 11(7):6904-6910.
    [29] Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, Dyčka F, Šebela M, Prucek R, Tomanec O, Zbořil R. Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotechnology, 2018, 13(1):65-71.
    [30] Mikura S, Wada H, Okazaki M, Nakamura M, Honda K, Yasutake T, Higaki M, Ishii H, Watanabe T, Tsunoda T, Goto H. Risk factors for bacteraemia attributable to Pseudomonas aeruginosa resistant to imipenem, levofloxacin, or gentamicin. Journal of Hospital Infection, 2011, 79(3):267-268.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑有坤,唐明秀,刘淑云,吴剑波. 小分子功能化的金纳米粒子对革兰氏阴性多药耐药细菌的抗菌特性[J]. 微生物学报, 2021, 61(2): 406-416

复制
分享
文章指标
  • 点击次数:253
  • 下载次数: 723
  • HTML阅读次数: 1825
  • 引用次数: 0
历史
  • 收稿日期:2020-03-26
  • 最后修改日期:2020-05-12
  • 在线发布日期: 2021-06-03
文章二维码