溶磷真菌ATMT转化条件优化及其对矮牵牛的促生效果评价
作者:
基金项目:

广州市林业和园林局预算项目(2061900000139,2061900000045)


Optimization of a phosphate-solubilizing fungus ATMT system and evaluation of its growth-promoting effect on Petunia hybrida
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 建立和优化一株溶磷真菌咖啡果小蠹青霉菌Penicillium brocae的转化体系,并利用分子标记观察其在根部的定殖;检测接种咖啡果小蠹青霉菌对植物的促生作用,为菌肥的研发奠定基础。[方法] 利用农杆菌介导的转化体系(Agrobacterium tumefaciens-mediated transformation,ATMT)获得转化子并优化转化条件,结合插入片段携带的分子标记进行转化子验证和根部定殖研究,同时利用TAIL-PCR (thermal asymmetric interlaced-PCR)锚定插入位点序列信息;通过矮牵牛盆栽实验,设置T1(10 mL水)、T2(10 g/L磷矿粉,10 mL)、T3(106个/mL孢子,10 mL)和T4(10 g/L磷矿粉+106个/mL孢子,10 mL)4个处理,探究P.brocae对植物的促生作用。[结果] 利用优化后的ATMT体系可获得44个转化子/106个孢子,通过标记基因hyggfp的克隆以及GFP荧光观察和GUS染色结果验证了转化子,并利用GUS标记观察到了菌株在矮牵牛根部的定殖情况;利用TAIL-PCR克隆了一株溶磷能力有较显著降低的转化子上插入位点一端的侧翼序列,并确定了插入位点的位置;T4处理组鲜重较T1、T2和T3差异显著(P ≤ 0.05),且分别高出35.4%、35.6%和21.4%,T1、T2和T3相互之间无显著差异。T4处理组干重较T1、T2以及T3也有显著差异(P ≤ 0.05),且分别高出25.1%、37.8%和26.0%,T1、T2和T3之间亦无显著差异。[结论] 本研究优化了P.brocae的ATMT体系并观察到了转化子在矮牵牛根表的定殖;磷矿粉和P.brocae孢子共施能够显著促进矮牵牛幼苗的生长,但二者分别单独施用则无此效果,推测在二者共施情况下P.brocae可能提高了磷矿粉的肥效。

    Abstract:

    [Objective] To optimize the transformation system of a phosphate-solubilizing fungus Penicillium brocae and modify the strain with molecular tag for root colonization analysis; to evaluate the growth promotion effects of P. brocae. [Methods] We optimized ATMT (Agrobacterium tumefaciens-mediated transformation) parameters to get P. brocae transformants, we confirmed the transformants and its root colonization with molecular tags; we used TAIL-PCR (thermal asymmetric interlaced-PCR) to characterize T-DNA insertion site; we evaluated the growth promotion effects of P. brocae by Petunia hybrida pot experiments with treatments of T1 (10 mL water), T2 (10 g/L phosphate rock, 10 mL), T3 (106 spores/mL, 10 mL) or T4 (10 g/L phosphate rock and 106 spores/mL, 10 mL).[Results] We got 44 transformants per 106 spores by parameters optimization and confirmed the transformants with gfp and hyg gene cloning, GFP fluorescence detecting and GUS staining. We observed the colonization of P. brocae on P. hybrida root surface by GUS staining. The insertion site flanking sequence of a transformant characterized with phosphate solubilization capacity significantly decreasing was obtained by TAIL-PCR. P. hybrida fresh weight of T4 were 35.4%, 35.6% and 21.4% higher than that of T1, T2 and T3, the dry weight of T4 were 25.1%, 37.8% and 26.0% higher than that of T1, T2 and T3, respectively. There was no significant difference among the fresh or dry weight of T1, T2 and T3 (P ≤ 0.05). [Conclusion] We optimized the ATMT system and observed the root colonization of P. brocae. The application of P. brocae spores and phosphate rock together but not alone, could promote the growth of P. hybrida and this gave a hint that P. brocae may enhance the fertilizer efficiency of phosphate rock in soil.

    参考文献
    [1] Yang S, Yang T, Lin B, Liu XZ, Xiang MC. Isolation and evaluation of two phosphate-dissolving fungi. Acta Microbiologica Sinica, 2018, 58(2):264-273. (in Chinese) 杨顺, 杨婷, 林斌, 刘杏忠, 向梅春. 两株溶磷真菌的筛选、鉴定及溶磷效果的评价. 微生物学报, 2018, 58(2):264-273.
    [2] Whitelaw MA, Harden TJ, Helyar KR. Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biology and Biochemistry, 1999, 31(5):655-665.
    [3] Sane SA, Mehta SK. Isolation and evaluation of rock phosphate solubilizing fungi as potential biofertilizer. Journal of Fertilizers & Pesticides, 2015, 6(2):1000156.
    [4] Liu ST, Lee LY, Tai CY, Hung CH, Chang YS, Wolfram JH, Rogers R, Goldstein AH. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101:nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. Journal of Bacteriology, 1992, 174(18):5814-5819.
    [5] Goldstein AH, Liu ST. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Bio/Technology, 1987, 5(1):72-24.
    [6] Miller SH, Browne P, Prigent-Combaret C, Combes-Meynet E, Morrissey JP, O'gara F. Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environmental Microbiology Reports, 2010, 2(3):403-411.
    [7] Jiao ZW, Wu WL, Guo YB. Effect of glucose dehydrogenase on mineral phosphate solubilization with different carbon sources in Rahnella aquatilis HX2. Xinjiang Agricultural Sciences, 2015, 52(2):268-274. (in Chinese) 焦子伟, 吴文良, 郭岩彬. 不同碳源条件下GDH对植物促生菌HX2溶解无机磷影响的研究. 新疆农业科学, 2015, 52(2):268-274.
    [8] 殷中伟. 真菌溶磷相关基因的克隆与功能分析. 中国农业大学博士学位论文, 2015.
    [9] 江红梅. 真菌溶磷相关基因的克隆与功能验证. 中国农业科学院博士学位论文, 2018.
    [10] Yang CD, Liu G, Zheng YZ, Xing M. Application of Agrobacterium tumefaciens in transformation of filamentous fungi. Letters in Biotechnology, 2006, 17(5):784-787. (in Chinese) 杨长得, 刘刚, 郑易之, 邢苗. 根癌农杆菌在丝状真菌转化中的应用. 生物技术通讯, 2006, 17(5):784-787.
    [11] De Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology, 1998, 16(9):839-842.
    [12] Chen YJ, Wei JF. Progress on the research of genetic transformation of filamentous fungi. Journal of Yunnan Agricultural University, 2009, 24(3):448-454. (in Chinese) 陈赟娟, 韦建福. 丝状真菌遗传转化的研究进展. 云南农业大学学报, 2009, 24(3):448-454.
    [13] Huang JJ, Ma ZH, Zhong GW, Sheppard DC, Zhang SZ. The mitochondrial thiamine pyrophosphate transporter tptA promotes adaptation to low iron conditions and virulence in fungal pathogen Aspergillus fumigatus. Virulence, 2019, 10(1):234-247.
    [14] Lu YY, Xiao SQ, Wang F, Sun JY, Zhao LK, Yan LB, Xue CS. Agrobacterium tumefaciens-mediated transformation as an efficient tool for insertional mutagenesis of Cercospora zeae-maydis. Journal of Microbiological Methods, 2017, 133:8-13.
    [15] Florencio CS, Brandão FAS, De Mello TM, Bocca AL, Felipe MSS, Vicente VA, Fernandes L. Genetic manipulation of Fonsecaea pedrosoi using particles bombardment and Agrobacterium mediated transformation. Microbiological Research, 2018, 207:269-279.
    [16] Sun JY, Xu RD, Xiao SQ, Lu YY, Zhang QF, Xue CS. Agrobacterium tumefaciens-mediated transformation as an efficient tool for insertional mutagenesis of Kabatiella zeae. Journal of Microbiological Methods, 2018, 149:96-100.
    [17] Jia PS, Ding LL, Zhou BJ, Guo HS, Gao F. Construction of a T-DNA insertional mutant library for Verticillium dahliae Kleb. and analysis of a mutant phenotype. Cotton Science, 2012, 24(1):62-70. (in Chinese) 贾培松, 丁丽丽, 周邦军, 郭惠珊, 高峰. 棉花黄萎病菌T-DNA插入突变体库的构建及其表型分析. 棉花学报, 2012, 24(1):62-70.
    [18] Zhang YJ, Zhao JJ, Xie M, Peng DL. Agrobacterium tumefaciens-mediated transformation in the entomopathogenic fungus Lecanicillium lecanii and development of benzimidazole fungicide resistant strains. Journal of Microbiological Methods, 2014, 105:168-173.
    [19] Zheng ZL, Huang CH, Cao L, Xie CH, Han RC. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biology, 2011, 115(3):265-274.
    [20] Mao C, Dai QD, Wang J, Liu YX, Yang LY, Guo LJ, Huang JS. Establishment of ATMT Fusarium oxysporum f. sp. cubense race 4 effective transformation system and screening of the T-DNA insertional mutants. Journal of Southern Agriculture, 2013, 44(12):1985-1991. (in Chinese) 毛超, 戴青冬, 汪军, 刘一贤, 杨腊英, 郭立佳, 黄俊生. 香蕉枯萎病菌4号生理小种农杆菌介导遗传转化体系的建立及T-DNA插入突变体的筛选. 南方农业学报, 2013, 44(12):1985-1991.
    [21] Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S. Agrobacterium-mediated transformation of Fusarium oxysporum:an efficient tool for insertional mutagenesis and gene transfer. Phytopathology, 2001, 91(2):173-180.
    [22] Vu TX, Ngo TT, Mai LTD, Bui TT, Le DH, Bui HTV, Nguyen HQ, Ngo BX, Tran VT. A highly efficient Agrobacterium tumefaciens-mediated transformation system for the postharvest pathogen Penicillium digitatum using DsRed and GFP to visualize citrus host colonization. Journal of Microbiological Methods, 2018, 144:134-144.
    [23] Liu N, Chen GQ, Ning GA, Shi HB, Zhang CL, Lu JP, Mao LJ, Feng XX, Liu XH, Su ZZ, Lin FC. Agrobacterium tumefaciens-mediated transformation:an efficient tool for insertional mutagenesis and targeted gene disruption in Harpophora oryzae. Microbiological Research, 2016, 182: 40-48.
    [24] Gius D, Grossman S, Bedell MA, Laimins LA. Inducible and constitutive enhancer domains in the noncoding region of human papillomavirus type 18. Journal of Virology, 1988, 62(3):665-672.
    [25] Elkon R, Agami R. Characterization of noncoding regulatory DNA in the human genome. Nature Biotechnology, 2017, 35(8):732-746.
    [26] Wang Z, Cao CL, Ku YL, Xu GY, Lin YB, Yang XD. Bacillus megatherium WY4 labeled by GFP and its colonization in Chinese cabbage (Brassica chinensis). Journal of Agricultural Biotechnology, 2016, 24(12):1925-1934. (in Chinese) 王珍, 曹翠玲, 库永丽, 徐国益, 林雁冰, 柳晓东. 巨大芽胞杆菌WY4的GFP标记及其在小白菜上的定殖. 农业生物技术学报, 2016, 24(12):1925-1934.
    [27] Wang Z, Xu GY, Ma PD, Lin YB, Yang XN, Cao CL. Isolation and characterization of a phosphorus-solubilizing bacterium from rhizosphere soils and its colonization of Chinese cabbage (Brassica campestris ssp. chinensis). Frontiers in Microbiology, 2017, 8:1270.
    [28] Meng LH, Zhang P, Li XM, Wang BG. Penicibrocazines A-E, five new sulfide diketopiperazines from the marine-derived endophytic fungus Penicillium brocae. Marine Drugs, 2015, 13(1):276-287.
    [29] Pradeep S, Faseela P, Josh MKS, Balachandran S, Devi RS, Benjamin S. Fungal biodegradation of phthalate plasticizer in situ. Biodegradation, 2013, 24(2):257-267.
    [30] Shi FC, Yin ZW, Jiang HM, Fan BQ. Screening, identification of P-dissolving fungus P83 strain and its effects on phosphate solubilization and plant growth promotion. Acta Microbiologica Sinica, 2014, 54(11):1333-1343. (in Chinese) 史发超, 殷中伟, 江红梅, 范丙全. 一株溶磷真菌筛选鉴定及其溶磷促生效果. 微生物学报, 2014, 54(11):1333-1343.
    [31] Zhang L, Fan BQ, Huang WY. Study on transformation of P-dissolving Penicillium oxalicum P8 with double-marker vector expressing green fluorescent protein and hygromycin B resistance. Acta Microbiologica Sinica, 2005, 45(6):842-845. (in Chinese) 张磊, 范丙全, 黄为一. 绿色荧光蛋白和潮霉素抗性双标记载体转化草酸青霉菌P8的研究. 微生物学报, 2005, 45(6):842-845.
    [32] Gong MB, Fan BQ, Wang HY. Isolation and identification of a novel phosphate-dissolving strain Penicillium aculeatum Z32 and its colonization and phosphate-dissolving characteristics in soil. Acta Microbiologica Sinica, 2010, 50(5):580-585. (in Chinese) 龚明波, 范丙全, 王洪媛. 一株新的溶磷棘孢青霉菌Z32的分离、鉴定及其土壤定殖与溶磷特性. 微生物学报, 2010, 50(5):580-585.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

许昌超,张俊涛. 溶磷真菌ATMT转化条件优化及其对矮牵牛的促生效果评价[J]. 微生物学报, 2021, 61(2): 417-427

复制
分享
文章指标
  • 点击次数:346
  • 下载次数: 842
  • HTML阅读次数: 1664
  • 引用次数: 0
历史
  • 收稿日期:2020-03-26
  • 最后修改日期:2020-05-21
  • 在线发布日期: 2021-06-03
文章二维码