藏猪小肠形态、消化酶及微生物多样性研究
作者:
基金项目:

西藏自治区厅校联合基金[XZ2019ZRG-55(Z)];中央引导地方项目(YDZX20195400004426);中央财政支持地方高校发展专项资金(ZZXT2019-02);中央支持地方高校改革发展资金(2018XZ503118003)


Intestinal morphology, digestive enzymes and bacterial diversity of Tibetan pigs
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 肠道是动物的主要消化器官,同时也是机体抵抗外源病原菌的重要屏障,已有研究表明,动物的品种、饲养方式、生长阶段均会影响动物的肠道菌群结构,但对舍饲和放牧饲养条件下藏猪的肠道菌群结构,以及藏猪和长白、约克与杜洛克三元杂交猪(DLY猪)的肠道菌群结构是否有差异,尚未见报道。[方法] 本研究选取6-7月龄的放牧藏猪、舍饲藏猪和DLY猪的小肠组织,分别采用组织切片法测定各试验猪的肠道形态、酶活性测定试剂盒测定肠道内容物的消化酶活性,高通量测序法测定肠道微生物。[结果] DLY猪小肠的肌层厚度和绒毛高度高于藏猪,而隐窝深度低于藏猪;舍饲藏猪和放牧藏猪的小肠形态没有显著变化。DLY猪小肠的胰蛋白酶活性高于藏猪,而淀粉酶活性低于藏猪。三组猪小肠微生物的优势菌门均为ProteobacteriaFirmicutesBacteroidetes;藏猪的优势菌属为RalstoniaEscherichia,而DLY猪的优势菌属为RalstoniaBradyrhizobium,但含量却存在显著性差异。舍饲藏猪与放牧藏猪肠道菌群结构相似度较高,而藏猪与DLY猪肠道菌群结构相似度较低。[结论] 放牧藏猪、舍饲藏猪和DLY猪的小肠形态、消化酶活性和肠道菌群结构均存在显著性差异。

    Abstract:

    [Objective] The intestinal tract comprises the main digestive organs of animals and is an important barrier that confers organism resistance to exogenous pathogens. The intestinal flora of animals is reportedly related to animal species, feeding methods and growth stage. However, it is unclear whether the intestinal bacteria of house-feeding Tibetan, grazing Tibetan and Landrace, York and Duroc (DLY) three-way hybrid pigs differ. [Methods] The intestinal tissues of 6-month-old to 7-month-old grazing Tibetan, house-feeding Tibetan and DLY pigs were selected. The intestinal morphology of each pig was determined by tissue section method. The digestive enzyme activity of intestinal contents was determined by using an enzyme activity assay kit. The intestinal microbiota was examined through high-throughput sequencing technology. [Results] The muscular thickness and villus height of duodenum, jejunum and ileum of DLY pigs were significantly higher than those of Tibetan pigs. The crypt depth of the duodenum, jejunum and ileum of DLY pigs was significantly lower than that of Tibetan pigs. The intestinal morphology was not significantly different between grazing and house-feeding Tibetan pigs. The trypsin activity in the small intestines of DLY pigs was remarkably higher than that of Tibetan pigs, whereas the amylase activity in the small intestines of DLY pigs was noticeably lower than that of Tibetan pigs. The dominant phyla in all three groups were Proteobacteria, Firmicutes and Bacteroidetes. The dominant genera in Tibetan pigs were Ralstonia and Escherichia, whereas the dominant genera in DLY pigs were Ralstonia and Bradyrhizobium, but the contents were significantly different. The similarity of the intestinal bacterial community structure between house-feeding and grazing Tibetan pigs was higher than that between Tibetan and DLY pigs. [Conclusion] Significant differences in intestinal morphology, digestive enzyme activity and intestinal microbial structure were observed among grazing Tibetan, house-feeding Tibetan and DLY pigs.

    参考文献
    [1] Wu SM, Ciren D, Huang SY, Xu MJ, Ga G, Yan C, Mahmoud MS, Zou FC, Zhu XQ. First report of Toxoplasma gondii prevalence in Tibetan pigs in Tibet, China. Vector-Borne and Zoonotic Diseases, 2012, 12(8):654-656.
    [2] Li K, Lan YF, Luo HQ, Shahzad M, Zhang H, Wang L, Zhang LH, Liu DY, Liu XY, Hao YN, Sizhu SL, Li JK. Prevalence of three Oesophagostomum spp. from Tibetan pigs analyzed by genetic markers of nad1, cox3 and ITS1. Acta Parasitologica, 2017, 62(1):90-96.
    [3] Yang SL, Zhang H, Mao HM, Yan DW, Lu SX, Lian LS, Zhao GY, Yan YL, Deng WD, Shi XW, Han SX, Li S, Wang XJ, Gou X. The local origin of the Tibetan pig and additional insights into the origin of Asian pigs. PLoS One, 2011, 6(12):e28215.
    [4] Huang YW, Meng XJ. Novel strategies and approaches to develop the next generation of vaccines against porcine reproductive and respiratory syndrome virus (PRRSV). Virus Research, 2010, 154(1/2):141-149.
    [5] Wang SR, Yuan XJ, Dong ZH, Li JF, Guo G, Bai YF, Zhang JY, Shao T. Characteristics of isolated lactic acid bacteria and their effects on the silage quality. Asian-Australasian Journal of Animal Sciences, 2017, 30(6):819-827.
    [6] Chen L, Guo G, Yuan XJ, Shimojo M, Yu CQ, Shao T. Effect of applying molasses and propionic acid on fermentation quality and aerobic stability of total mixed ration silage prepared with whole-plant corn in Tibet. Asian-Australasian Journal of Animal Sciences, 2014, 27(3):349-356.
    [7] Burkey TE, Skjolaas KA, Minton JE. Porcine mucosal immunity of the gastrointestinal tract. Journal of Animal Science, 2009, 87(4):1493-1501.
    [8] Looft T, Allen HK, Cantarel BL, Levine UY, Bayles DO, Alt DP, Henrissat B, Stanton TB. Bacteria, phages and pigs:the effects of in-feed antibiotics on the microbiome at different gut locations. The ISME Journal, 2014, 8(8):1566-1576.
    [9] Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, Tylosin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(38):15485-15490.
    [10] Houshmand M, Azhar K, Zulkifli I, Bejo MH, Kamyab A. Effects of non-antibiotic feed additives on performance, immunity and intestinal morphology of broilers fed different levels of protein. South African Journal of Animal Science, 2012, 42(1):22-32.
    [11] Xu ZR, Hu CH, Xia MS, Zhan XA, Wang MQ. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poultry Science, 2003, 82(6):1030-1036.
    [12] Segawa S, Fujiya M, Konishi H, Ueno N, Kobayashi N, Shigyo T, Kohgo Y. Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway. PLoS One, 2011, 6(8):e23278.
    [13] Li XL, Li JT, Pan SD, Wu CD. Effects of fermented feed on morphology of small intestine of weaned piglets. Feed Industry, 2014, 35(4):38-41. (in Chinese) 李旋亮, 李建涛, 潘树德, 吴长德. 发酵饲料对断奶仔猪肠道肠黏膜形态的影响. 饲料工业, 2014, 35(4):38-41.
    [14] Yurist-Doutsch S, Arrieta MC, Vogt SL, Finlay BB. Gastrointestinal microbiota-mediated control of enteric pathogens. Annual Review of Genetics, 2014, 48:361-382.
    [15] Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. Metagenomic analysis of the human distal gut microbiome. Science, 2006, 312(5778):1355-1359.
    [16] Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Reviews Immunology, 2010, 10(3):159-169.
    [17] Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 2013, 10(1):57-59.
    [18] Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R, Beiko RG, Huttenhower C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 2013, 31(9):814-821.
    [19] Ramette A. Multivariate analyses in microbial ecology. FEMS Microbiology Ecology, 2007, 62(2):142-160.
    [20] 辛海云. 藏猪肠道中拮抗致病菌微生物的筛选及其抗菌肽研究. 西北农林科技大学博士学位论文, 2017.
    [21] Xiao WP, Liu HY, Zhao HB, Bai L, Peng JY, Liu XQ, Wang JG, Song YX, Cao BY. Research of phytivorous mechanism of Tibet pig-analyses of intestinal canal microorganism diversity. Chinese Journal of Veterinary Science, 2013, 33(3):472-476. (in Chinese) 肖文萍, 刘海艳, 赵海波, 白龙, 彭甲银, 刘雪青, 王建刚, 宋宇轩, 曹斌云. 藏猪食草机理的研究——藏猪肠道微生物的多样性分析. 中国兽医学报, 2013, 33(3):472-476.
    [22] Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature, 2007, 449(7164):811-818.
    [23] Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science, 2005, 308(5724):1635-1638.
    [24] 肖文萍. 藏猪肠道微生物多样性的研究. 西北农林科技大学硕士学位论文, 2012.
    [25] 杨伟平. 藏猪肠道细菌群落组成与纤维素分解菌的研究. 西北农林科技大学博士学位论文, 2015.
    [26] Ren MM, Yang H, Xiang Y, Zhang XJ, Xu E, Shen LL, Xiao YP. Effects of dietary fiber levels on growth performance, microbial community structure and short-chain fatty acid content in cecum of Jinhua pigs. Chinese Journal of Animal Nutrition, 2020, 32(6):2575-2585. (in Chinese) 任敏敏, 杨华, 项云, 章啸君, 徐娥, 申露露, 肖英平. 饲粮纤维水平对金华猪生长性能、盲肠菌群结构和短链脂肪酸含量的影响. 动物营养学报, 2020, 32(6):2575-2585.
    [27] Xu E, Yang H, Liu XT, Ren MM, Shen LL, Lv WT, Xiao YP. Study on bacterial community structure and short chain fatty acid content in different parts of intestines of Yorkshire pigs. Chinese Journal of Animal Nutrition, 2019, 31(10):4509-4518. (in Chinese) 徐娥, 杨华, 刘秀婷, 任敏敏, 申露露, 吕文涛, 肖英平. 大约克猪肠道不同部位的菌群结构和短链脂肪酸含量研究. 动物营养学报, 2019, 31(10):4509-4518.
    [28] Minamoto Y, Otoni CC, Steelman SM, Büyükleblebici O, Steiner JM, Jergens AE, Suchodolski JS. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes, 2015, 6(1):33-47.
    [29] Dong YJ, Chen J, Yang XP, Han YD, Wu Q, Wang LS. Effect of Chinese herbal preparations instead of
    chlorotetracycline on the growth performance of piglet. Modern Journal of Animal Husbandry and Veterinary Medicine, 2019, (6):32-35. (in Chinese) 董延江, 陈稼, 杨小萍, 韩业东, 吴倩, 王连山. 复方中草药替代金霉素对仔猪生长性能的影响. 现代畜牧兽医, 2019, (6):32-35.
    [30] Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6):1948-1953.
    [31] Spence C, Wells WG, Smith CJ. Characterization of the primary starch utilization operon in the obligate anaerobe Bacteroides fragilis:regulation by carbon source and oxygen. Journal of Bacteriology, 2006, 188(13):4663-4672.
    [32] 白浩男. 藏猪肠道细菌多样性研究与益生菌筛选. 西北农林科技大学硕士学位论文, 2019.
    [33] Tan SP, Sun WX, Liu RJ. Combination of Glomus spp. and Bacillus sp. M3-4 promotes plant resistance to bacterial wilt in potato. Acta Phytopathologica Sinica, 2015, 45(6):661-669. (in Chinese) 谭树朋, 孙文献, 刘润进. 球囊霉属真菌与芽孢杆菌M3-4协同作用降低马铃薯青枯病的发生及其机制初探. 植物病理学报, 2015, 45(6):661-669.
    [34] Meganathan R. Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q):a perspective on enzymatic mechanisms. Vitamins & Hormones, 2001, 61:173-218.
    [35] Ivarsson E, Roos S, Liu HY, Lindberg JE. Fermentable non-starch polysaccharides increases the abundance of Bacteroides-Prevotella-Porphyromonas in ileal microbial community of growing pigs. Animal, 2014, 8(11):1777-1787.
    [36] Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters, 2009, 294(1):1-8.
    相似文献
    引证文献
引用本文

商振达,商鹏,刘锁珠,谭占坤,王宏辉,孔庆辉. 藏猪小肠形态、消化酶及微生物多样性研究[J]. 微生物学报, 2021, 61(3): 655-666

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-12
  • 最后修改日期:2020-07-22
  • 在线发布日期: 2021-03-05
文章二维码