基于第三代长读段测序数据解析蜜蜂球囊菌基因的可变剪切与可变腺苷酸化
作者:
基金项目:

国家现代农业产业技术体系建设专项资金(CARS-44-KXJ7);福建省自然科学基金(2018J05042);福建省教育厅中青年教师教育科研项目(JAT170158);福建农林大学硕士生导师团队项目(郭睿);福建农林大学杰出青年科研人才计划(xjq201814);福建省病原真菌与真菌毒素重点实验室(福建农林大学)开放课题;福建农林大学优秀硕士学位论文资助基金(杜宇)


Analysis of alternative splicing and polyadenylation of Ascosphaera apis genes based on third-generation long-read sequencing dataset
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [57]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 蜜蜂球囊菌(Ascosphaera apis,简称球囊菌)是一种专性侵染蜜蜂幼虫的真菌病原,导致的白垩病是严重影响养蜂生产的顽疾,每年给养蜂业造成较大损失。本研究旨在基于已获得的第三代长读段测序数据对球囊菌菌丝(Aam)和孢子(Aas)中基因的可变剪切(alternative splicing,AS)和可变多聚腺苷酸化(alternative polyadenylation,APA)进行深入分析。[方法] 利用Astalavista软件鉴定Aam和Aas中基因的AS事件类型。利用IGV浏览器对部分剪切异构体(isoform)的结构进行可视化。通过TAPIS pipeline对Aam和Aas中基因的APA位点进行鉴定。通过MEME软件对Aam和Aas中全长转录本的APA位点上游50 bp的序列特征进行分析并对motif进行鉴定。[结果] 在Aam中共鉴定到286次AS事件,包括162次RI (Retained intron),87次A3(Alternative 3'splice-site)、32次A5(Alternative 5'splice-site)和5次SE (Skipping exon);在Aas中共鉴定到559次AS事件,包括305次RI、155次A3、85次A5、13次SE和1次MEE (Mutually exclusive exon)。进一步分析发现,现有参考基因组上的多数注释基因结构并不完整;部分注释基因在菌丝和孢子中转录形成的isoform在数量和结构方面均存在差异;部分isoform在参考基因组中没有对应的注释基因。Aam中共鉴定到2748个基因含有1个及以上的APA位点,其中含有1个APA位点的基因数量最多(726,26.42%);Aas中共鉴定到2768个基因含有1个及以上的APA位点,其中含有5个以上APA位点的基因数量最多(1180,42.63%)。部分基因在菌丝和孢子中含有不同的APA位点数。序列特征分析结果显示,球囊菌全长转录本的3'UTR的上下游表现出明显的碱基倾向性,U和A分别富集在3'UTR的上游和下游。此外,在球囊菌全长转录本的APA位点上游鉴定到4个motif,分别是UCUCCU、UCUUCU、CCCACC和CCCCCU。[结论] 本研究通过对球囊菌菌丝和孢子中基因的AS和APA进行深入分析,揭示了球囊菌转录组的复杂性,为完善现有的基因组和转录组注释提供了宝贵信息,也为探究AS和APA在球囊菌的基因表达调控中的作用提供了关键基础。

    Abstract:

    [Objective] Ascosphaera apis is a fungal pathogen that exclusively infects honeybee larvae, leading to chalkbrood, which is a chronic disease in beekeeping industry and results in heavy losses for apiculture. The objective of this work is to investigate alternative splicing (AS) and alternative polyadenylation (APA) of genes in A. apis mycelium (Aam) and spore (Aas) based on previously gained third-generation long-read sequencing dataset. [Methods] The type of AS events occurred in genes in Aam and Aaswas identified. The visualization of partial isoforms' structures was performed with IGV browser. APA sites of genes in Aam and Aas were identified using TAPIS pipeline. MEME software was used to investigate characteristics of sequences at 50 bp upstream of APA sites followed by identification of motifs. [Results] In total, 286 AS events were identified in Aam, including 162 retained intron (RI), 87 alternative 3ʹ splice-site (A3), 32 alternative 5ʹ splice-site (A5) and five skipping exon (SE), while 559 AS events were identified in Aas, including 305 RI, 155 A3, 85 A5, 13 SE and one mutually exclusive exon (MEE). Further analysis suggested that majority of annotated genes in current reference genome are incomplete, number and structure of partial annotated genes in mycelium differ from those in spore, and for part of isoforms, there are no corresponding annotated genes in reference genome. Additionally, a total of 2748 genes in Aam were observed to contain one and more APA sites, among them those containing one APA site was the largest group (726, 26.42%); while in Aas 2768 gene were found to contain one and more APA sites, and those containing more than five APA sites were the most abundant (1180, 42.63%). Besides, part of genes in A. apis mycelium and spore were detected to have various APA sites. Moreover, analysis of sequence characteristics indicated that upstream and downstream sequences of 3ʹ UTR of A. apis full-length transcripts have an obvious base bias, and U and A were respectively enriched in the upstream and downstream. Moreover, four motifs were identified at the upstream of APA sites of A. apis full-length transcripts, including UCUCCU, UCUUCU, CCCACC and CCCCCU. [Conclusion] In this study, AS and APA of genes in A. apis mycelium and spore were deeply analyzed, the results uncovered the complexity of A. apis transcriptome, offering valuable information for improvement of current genome and transcriptome annotations and a pivotal foundation for exploration of the function of AS and APA involved in regulation of A. apis gene expression.

    参考文献
    [1] Chen DF, Guo R, Xiong CL, Zheng YZ, Hou CS, Fu ZM. Morphological and molecular identification of chalkbrood disease pathogen Ascosphaera apis in Apis cerana cerana. Journal of Apicultural Research, 2018, 57(4):516-521.
    [2] Guo R, Du Y, Tong XY, Xiong CL, Zheng YZ, Xu GJ, Wang HP, Geng SH, Zhou DD, Guo YL, Wu SZ, Chen DF. Differentially expressed microRNAs and their regulation networks in Apis mellifera ligustica larval gut during the early stage of Ascosphaera apis infection. Scientia Agricultura Sinica, 2019, 52(1):166-180. (in Chinese) 郭睿, 杜宇, 童新宇, 熊翠玲, 郑燕珍, 徐国钧, 王海朋, 耿四海, 周丁丁, 郭意龙, 吴素珍, 陈大福. 意大利蜜蜂幼虫肠道在球囊菌侵染前期的差异表达microRNA及其调控网络. 中国农业科学, 2019, 52(1):166-180.
    [3] Xiong CL, DU Y, Feng RR, Jiang HB, Shi XY, Wang HP, Fan XX, Wang J, Zhu ZW, Fan YC, Chen HZ, Zhou DD, Zheng YZ, Chen DF, Guo R. Differential expression pattern and regulation network of microRNAs in Ascosphaera apis invading Apis cerana cerana 6-day-old larvae. Acta Microbiologica Sinica, 2020, 60(5):992-1009. (in Chinese) 熊翠玲, 杜宇, 冯睿蓉, 蒋海宾, 史小玉, 王海朋, 范小雪, 王杰, 祝智威, 范元婵, 陈华枝, 周丁丁, 郑燕珍, 陈大福, 郭睿. 侵染中华蜜蜂6日龄幼虫的蜜蜂球囊菌的微小RNA差异表达谱及调控网络. 微生物学报, 2020, 60(5):992-1009.
    [4] Qin X, Evans JD, Aronstein KA, Murray KD, Weinstock GM. Genome sequences of the honey bee pathogens Paenibacillus larvae and Ascosphaera apis. Insect Molecular Biology, 2006, 15(5):715-718.
    [5] Shang YF, Xiao GH, Zheng P, Cen K, Zhan S, Wang CS. Divergent and convergent evolution of fungal pathogenicity. Genome Biology and Evolution, 2016, 8(5):1374-1387.
    [6] Modrek B, Lee C. A genomic view of alternative splicing. Nature Genetics, 2002, 30(1):13-19.
    [7] Filichkin SA, Hamilton M, Dharmawardhana PD, Singh SK, Sullivan C, Ben-Hur A, Reddy ASN, Jaiswal P. Abiotic stresses modulate landscape of poplar transcriptome via alternative splicing, differential intron retention, and isoform ratio switching. Frontiers in Plant Science, 2018, 9:5.
    [8] Paronetto MP, Passacantilli I, Sette C. Alternative splicing and cell survival:from tissue homeostasis to disease. Cell Death & Differentiation, 2016, 23(12):1919-1929.
    [9] Wang ET, Sandberg R, Luo SJ, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes. Nature, 2008, 456(7221):470-476.
    [10] Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genetics, 2008, 40(12):1413-1415.
    [11] Nygard AB, Cirera S, Gilchrist MJ, Gorodkin J, Jørgensen CB, Fredholm M. A study of alternative splicing in the pig. BMC Research Notes, 2010, 3:123.
    [12] Mei WB, Boatwright L, Feng GQ, Schnable JC, Barbazuk WB. Evolutionarily conserved alternative splicing across monocots. Genetics, 2017, 207(2):465-480.
    [13] Remy E, Cabrito TR, Baster P, Batista RA, Teixeira MC, Friml J, Sá-Correia I, Duque P. A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. The Plant Cell, 2013, 25(3):901-926.
    [14] Shen YT, Zhou ZK, Wang Z, Li WY, Fang C, Wu M, Ma YM, Liu TF, Kong LA, Peng DL, Tian ZX. Global dissection of alternative splicing in paleopolyploid soybean. The Plant Cell, 2014, 26(3):996-1008.
    [15] Thatcher SR, Zhou WG, Leonard A, Wang BB, Beatty M, Zastrow-Hayes G, Zhao XY, Baumgarten A, Li BL. Genome-wide analysis of alternative splicing in Zea mays:landscape and genetic regulation. The Plant Cell, 2014, 26(9):3472-3487.
    [16] Guo R, Li L, Xiong CL, Zheng YZ, Fu ZM, Wang HP, Zhao HX, Chen DF. Analysis of the alternatively spliced genes in Apis cerana cerana larval gut under the Ascosphaera apis stress. Journal of Sichuan University (Natural Science Edition), 2018, 55(6):1313-1318. (in Chinese) 郭睿, 李龙, 熊翠玲, 郑燕珍, 付中民, 王海朋, 赵红霞, 陈大福. 中华蜜蜂幼虫肠道响应球囊菌胁迫的可变剪切基因分析. 四川大学学报(自然科学版), 2018, 55(6):1313-1318.
    [17] Guo R, Chen H, Zhang L, Zhao HY, Xiong CL, Zheng YZ, Fu ZM, Liang Q, Chen DF. Analysis of Apis mellifera ligustica larval gut's alternative spliced genes responding to Ascosphaera apis stress. Journal of Shanghai Jiaotong University (Agricultural Science), 2018, 36(3):1-6. (in Chinese) 郭睿, 陈恒, 张璐, 赵浩宇, 熊翠玲, 郑燕珍, 付中民, 梁勤, 陈大福. 意大利蜜蜂幼虫肠道响应球囊菌胁迫的可变剪接基因分析. 上海交通大学学报(农业科学版), 2018, 36(3):1-6.
    [18] Steijger T, Abril JF, Engström PG, Kokocinski F, The Rgasp Consortium, Hubbard TJ, Guigó R, Harrow J, Bertone P. Assessment of transcript reconstruction methods for RNA-seq. Nature Methods, 2013, 10(12):1177-1184.
    [19] Jackson RJ, Standart N. Do the poly(A) tail and 3' untranslated region control mRNA translation? Cell, 1990, 62(1):15-24.
    [20] Naftelberg S, Schor IE, Ast G, Kornblihtt AR. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annual Review of Biochemistry, 2015, 84:165-198.
    [21] Shen YJ, Venu RC, Nobuta K, Wu XH, Notibala V, Demirci C, Meyers BC, Wang GL, Ji GL, Li QSQ. Transcriptome dynamics through alternative polyadenylation in developmental and environmental responses in plants revealed by deep sequencing. Genome Research, 2011, 21(9):1478-1486.
    [22] Sherstnev A, Duc C, Cole C, Zacharaki V, Hornyik C, Ozsolak F, Milos PM, Barton GJ, Simpson GG. Direct sequencing of Arabidopsis thaliana RNA reveals patterns of cleavage and polyadenylation. Nature Structural & Molecular Biology, 2012, 19(8):845-852.
    [23] Hargreaves AD, Mulley JF. Assessing the utility of the Oxford Nanopore MinION for snake venom gland cDNA sequencing. PeerJ, 2015, 3:e1441.
    [24] Kilianski A, Haas JL, Corriveau EJ, Lien AT, Willis KL, Kadavy DR, Rosenzweig CN, Minot SS. Bacterial and viral identification and differentiation by amplicon sequencing on the MinION nanopore sequencer. Giga Science, 2015, 4(1):12.
    [25] Bolisetty MT, Rajadinakaran G, Graveley BR. Determining exon connectivity in complex mRNAs by nanopore sequencing. Genome Biology, 2015, 16(1):204.
    [26] Byrne A, Beaudin AE, Olsen HE, Jain M, Cole C, Palmer T, DuBois RM, Forsberg EC, Akeson M, Vollmers C. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nature Communications, 2017, 8:16027.
    [27] Wang B, Tseng E, Regulski M, Clark TA, Hon T, Jiao YP, Lu ZY, Olson A, Stein JC, Ware D. Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nature Communications, 2016, 7:11708.
    [28] Abdel-Ghany SE, Hamilton M, Jacobi JL, Ngam P, Devitt N, Schilkey F, Ben-Hur A, Reddy ASN. A survey of the sorghum transcriptome using single-molecule long reads. Nature Communications, 2016, 7:11706.
    [29] Chao YH, Yuan JB, Li SF, Jia SQ, Han LB, Xu LX. Analysis of transcripts and splice isoforms in red clover (Trifolium pratense L.) by single-molecule long-read sequencing. BMC Plant Biology, 2018, 18(1):300.
    [30] Li Y, Fang CC, Fu YH, Hu A, Li CC, Zou C, Li XY, Zhao SH, Zhang CJ, Li CC. A survey of transcriptome complexity in Sus Scrofa using single-molecule long-read sequencing. DNA Research, 2018, 25(4):421-437.
    [31] Workman RE, Tang AD, Tang PS, Jain M, Tyson JR, Razaghi R, Zuzarte PC, Gilpatrick T, Payne A, Quick J, Sadowski N, Holmes N, De Jesus JG, Jones KL, Soulette CM, Snutch TP, Loman N, Paten B, Loose M, Simpson JT, Olsen HE, Brooks AN, Akeson M, Timp W. Nanopore native RNA sequencing of a human poly (A) transcriptome. Nature Methods, 2019, 16(12):1297-1305.
    [32] Magi A, Semeraro R, Mingrino A, Giusti B, D'aurizio R. Nanopore sequencing data analysis:state of the art, applications and challenges. Briefings in Bioinformatics, 2018, 19(6):1256-1272.
    [33] Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION:delivery of nanopore sequencing to the genomics community. Genome Biology, 2016, 17:239.
    [34] Du Y, Chen HZ, Wang J, Zhu ZW, Xiong CL, Zheng YZ, Chen DF, Guo R. Nanopore long-read transcriptome data of fungal pathogen of chalkbrood disease, Ascosphaera apis. bioRxiv, 2020.
    [35] Du Y, Zhu ZW, Wang J, Wang XN, Jiang HB, Fan YC, Fan XX, Chen HZ, Long Q, Cai ZB, Xiong CL, Zheng YZ, Fu ZM, Chen DF, Guo R. Construction and annotation of Ascosphaera apis full-length trancriptome utilizing Nanopore third-genration long-read sequencing technology. Scientia Agricultura Sinica, 2021, 54(4):864-876. (in Chinese) 杜宇, 祝智威, 王杰, 王秀娜, 蒋海宾, 范元婵, 范小雪, 陈华枝, 隆琦, 蔡宗兵, 熊翠玲, 郑燕珍, 付中民, 陈大福, 郭睿. 利用第三代纳米孔长读段测序技术构建和注释蜜蜂球囊菌的全长转录组. 中国农业科学, 2021, 54(4):864-876.
    [36] 梁勤, 陈大福. 蜜蜂保护学. 北京:中国农业出版社, 2009.
    [37] Du Y, Tong XY, Zhou DD, Chen DF, Xiong CL, Zheng YZ, Xu GJ, Wang HP, Chen HZ, Guo YL, Long Q, Guo R. MicroRNA responses in the larval gut of Apis cerana cerana to Ascosphaera apis stress. Acta Microbiologica Sinica, 2019, 59(9):1747-1764. (in Chinese) 杜宇, 童新宇, 周丁丁, 陈大福, 熊翠玲, 郑燕珍, 徐国钧, 王海朋, 陈华枝, 郭意龙, 隆琦, 郭睿. 中华蜜蜂幼虫肠道响应球囊菌胁迫的MicroRNA应答分析. 微生物学报, 2019, 59(9):1747-1764.
    [38] Guo R, Du Y, Zhou NH, Liu SY, Xiong CL, Zheng YZ, Fu ZM, Xu GJ, Wang HP, Geng SH, Zhou DD, Chen DF. Comprehensive analysis of differentially expressed microRNAs and their target genes in the larval gut of Apis mellifera ligustica during the late stage of Ascosphaera apis stress. Acta Entomologica Sinica, 2019, 62(1):49-60. (in Chinese) 郭睿, 杜宇, 周倪红, 刘思亚, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 王海朋, 耿四海, 周丁丁, 陈大福. 意大利蜜蜂幼虫肠道在球囊菌胁迫后期的差异表达微小RNA及其靶基因分析. 昆虫学报, 2019, 62(1):49-60.
    [39] Jensen AB, Aronstein K, Flores JM, Vojvodic S, Palacio MA, Spivak M. Standard methods for fungal brood disease research. Journal of Apicultural Research, 2013, 52(1):10.
    [40] Jiang HB, Du Y, Fan XX, Wang J, Zhu ZW, Fan YC, Xiong CL, Fu ZM, Xu GJ, Chen DF, Guo R. Comparative transcriptome investigation of Ascosphaera apis spore and mycelium. Journal of Sichuan University (Natural Science Edition), 2020, 57(6):1177-1185. (in Chinese) 蒋海宾, 杜宇, 范小雪, 王杰, 祝智威, 范元婵, 熊翠玲, 付中民, 徐国钧, 陈大福, 郭睿. 蜜蜂球囊菌菌丝和孢子的比较转录组分析. 四川大学学报(自然科学版), 2020, 57(6):1177-1185.
    [41] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology:tool for the unification of biology. Nature Genetics, 2000, 25(1):25-29.
    [42] Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Research, 2004, 32(S1):D277-D280.
    [43] Chen HZ, Fan XX, Fan YC, Wang J, Zhu ZW, Jiang HB, Zhang WD, Long Q, Xiong CL, Zheng YZ, Fu ZM, Chen DF, Guo R. Analysis of alternative splicing and alternative polyadenylation of Nosema ceranae genes. Mycosystema, 2020, 39(12):1-12. (in Chinese) 陈华枝, 范小雪, 范元婵, 王杰, 祝智威, 蒋海宾, 张文德, 隆琦, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 陈大福, 郭睿. 东方蜜蜂微孢子虫基因的可变剪接及可变腺苷酸化解析. 菌物学报, 2020, 39(12):1-12.
    [44] Foissac S, Sammeth M. Astalavista:dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Research, 2007, 35(S2):W297-W299.
    [45] Bailey TL, Williams N, Misleh C, Li WW. MEME:discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research, 2006, 34(S2):W369-W373.
    [46] Zhang ZN, Xiong CL, Xu XJ, Huang ZJ, Zheng YZ, Luo Q, Liu M, Li WD, Tong XY, Zhang Q, Liang Q, Guo R, Chen DF. De novo assembly of a reference transcriptome and development of SSR markers for Ascosphaera apis. Acta Entomologica Sinica, 2017, 60(1):34-44. (in Chinese) 张曌楠, 熊翠玲, 徐细建, 黄枳腱, 郑燕珍, 骆群, 刘敏, 李汶东, 童新宇, 张琦, 梁勤, 郭睿, 陈大福. 蜜蜂球囊菌的参考转录组de novo组装及SSR分子标记开发. 昆虫学报, 2017, 60(1):34-44.
    [47] Chen DF, Du Y, Fan XX, Zhu ZW, Jiang HB, Wang J, Fan YC, Chen HZ, Zhou DD, Xiong CL, Zheng YZ, Xu XJ, Luo Q, Guo R. Reconstruction and functional annotation of Ascosphaera apis full-length transcriptome utilizing PacBio long reads combined with Illumina short reads. Journal of Invertebrate Pathology, 2020(176):107475.
    [48] Burri L, Williams BAP, Bursac D, Lithgow T, Keeling PJ. Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(43):15916-15920.
    [49] Cornman RS, Chen YP, Schatz MC, Street C, Zhao Y, Desany B, Egholm M, Hutchison S, Pettis JS, Ian Lipkin W, Evans JD. Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathogens, 2009, 5(6):e1000466.
    [50] Pelin A, Selman M, Aris-Brosou S, Farinelli L, Corradi N. Genome analyses suggest the presence of polyploidy and recent human-driven expansions in eight global populations of the honeybee pathogen Nosema ceranae. Environmental Microbiology, 2015, 17(11):4443-4448.
    [51] Yi H, Park J, Ha MJ, Lim J, Chang H, Kim VN. PABP cooperates with the CCR4-NOT complex to promote mRNA deadenylation and block precocious decay. Molecular Cell, 2018, 70(6):1081-1088.
    [52] Wu XH, Liu M, Downie B, Liang C, Ji GL, Li QSQ, Hunt AG. Genome-wide landscape of polyadenylation in Arabidopsis provides evidence for extensive alternative polyadenylation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30):12533-12538.
    [53] Jenjaroenpun P, Wongsurawat T, Pereira R, Patumcharoenpol P, Ussery DW, Nielsen J, Nookaew I. Complete genomic and transcriptional landscape analysis using third-generation sequencing:a case study of Saccharomyces cerevisiae CEN. PK113-7D. Nucleic Acids Research, 2018, 46(7):e38.
    [54] Bao JD, Chen ML, Zhong ZH, Tang W, Lin LY, Zhang XT, Jiang HL, Zhang DY, Miao CY, Tang HB, Zhang JS, Lu GD, Ming R, Norvienyeku J, Wang BH, Wang ZH. PacBio sequencing reveals transposable elements as a key contributor to genomic plasticity and virulence variation in Magnaporthe oryzae. Molecular Plant, 2017, 10(11):1465-1468.
    [55] Li JH, Zheng ZY, Chen DF, Liang Q. Factors influencing Ascosphaera apis infection on honeybee larvae and observation on the infection process. Acta Entomologica Sinica, 2012, 55(7):790-797. (in Chinese) 李江红, 郑志阳, 陈大福, 梁勤. 影响蜜蜂球囊菌侵染蜜蜂幼虫的因素及侵染过程观察. 昆虫学报, 2012, 55(7):790-797.
    [56] Chen DF, Guo R, Xiong CL, Liang Q, Zheng YZ, Xu XJ, Huang ZJ, Zhang ZN, Zhang L, Li WD, Tong XY, Xi WJ. Transcriptomic analysis of Ascosphaera apis stressing larval gut of Apis mellifera ligustica. Acta Entomologica Sinica, 2017, 60(4):401-411. (in Chinese) 陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 黄枳腱, 张曌楠, 张璐, 李汶东, 童新宇, 席伟军. 胁迫意大利蜜蜂幼虫肠道的球囊菌的转录组分析. 昆虫学报, 2017, 60(4):401-411.
    [57] Guo R, Chen DF, Huang ZJ, Liang Q, Xiong CL, Xu XJ, Zheng YZ, Zhang ZN, Xie YL, Tong XY, Hou ZX, Jiang LL, Dao C. Transcriptome analysis of Ascosphaera apis stressing larval gut of Apis cerana cerana. Acta Microbiologica Sinica, 2017, 57(12):1865-1878. (in Chinese) 郭睿, 陈大福, 黄枳腱, 梁勤, 熊翠玲, 徐细建, 郑燕珍, 张曌楠, 解彦玲, 童新宇, 侯志贤, 江亮亮, 刀晨. 球囊菌胁迫中华蜜蜂幼虫肠道过程中病原的转录组学研究. 微生物学报, 2017, 57(12):1865-1878.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杜宇,王杰,蒋海宾,王秀娜,范元婵,范小雪,祝智威,隆琦,张文德,熊翠玲,郑燕珍,付中民,陈大福,郭睿. 基于第三代长读段测序数据解析蜜蜂球囊菌基因的可变剪切与可变腺苷酸化[J]. 微生物学报, 2021, 61(3): 667-682

复制
分享
文章指标
  • 点击次数:563
  • 下载次数: 1390
  • HTML阅读次数: 3137
  • 引用次数: 0
历史
  • 收稿日期:2020-05-15
  • 最后修改日期:2020-08-26
  • 在线发布日期: 2021-03-05
文章二维码