松墨天牛成虫室内外种群肠道细菌的多样性及功能分析
作者:
基金项目:

国家自然科学基金(31470650);国家重点研发计划(2018YFC120040)


Diversity and function of intestinal bacteria in adult Monochamus alternatus Hope (Coleoptera:Cerambycidae) fed indoors and outdoors
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 为明确松墨天牛Monochamus alternatus成虫中、后肠细菌群落结构,探索肠道细菌的潜在功能。[方法] 分别提取室外和室内饲养的松墨天牛成虫各15头(室内和室外各15个中肠、15个后肠)的肠道DNA,利用二代测序技术对松墨天牛成虫肠道细菌的16S rDNA V3-V4区序列进行测序,统计操作分类单元(OTUs)数量,分析物种组成、Alpha多样性和Beta多样性;采用PICRUSt软件预测肠道细菌的功能。[结果] 共获得544180条高质量序列,在97%相似度下将其聚类为615个OTUs,总共注释到22个门、48个纲、112个目、172个科、285个属和408个种。室内种群的OTUs数量多于室外种群,室内外种群的OTUs种类存在差异性。同一种群的中、后肠之间差异不明显。变形菌门Proteobacteria为室内外松墨天牛肠道细菌的最优势门;肠杆菌属Enterobacter为室外种群肠道细菌和室内种群后肠细菌的最优势属,沙雷氏菌属Serratia为室内种群中肠的最优势属。Alpha多样性结果表明松墨天牛成虫室内种群肠道菌群的丰度显著高于室外种群;Beta多样性结果显示室外种群肠道菌群均一性和稳定性比室内种群好。室外和室内种群的中肠与后肠之间在菌群丰度和多样性上均无显著差异。功能预测结果表明,室内外松墨天牛成虫肠道菌群中代谢通路的丰度最高,其中以糖类代谢和氨基酸代谢为主,还有降解外源化学物质、萜类和聚酮类化合物及其他次生代谢物质的能力。不同种群、不同肠段之间的功能丰度均无显著差异。[结论] 明确了取食不同食料的松墨天牛成虫中、后肠的细菌群落结构及差异,了解了肠道细菌的潜在作用,为进一步探究松墨天牛肠道共生菌的功能提供了理论基础。

    Abstract:

    [Objective] In order to clarify the bacterial community structure in the midgut and hindgut of adult Monochamus alternatus, and to explore the potential function of intestinal bacteria. [Methods] The gut DNA from 15 individuals (15 midguts, 15 hindguts of outdoor and 15 midguts, 15 hindguts of indoor) of adult Monochamus alternatus fed indoors and outdoors were extracted. The 16S rDNA V3-V4 region of the intestinal bacteria of Monochamus alternatus was sequenced through next generation sequencing techniques. The number of OTUs was counted, the species composition, alpha diversity and beta diversity were analyzed, and the functions of intestinal bacteria were predicted by PICRUSt software. [Results] A total of 544180 high-quality sequences were obtained and clustered into 615 OTUs under 97% similarity, which were annotated into 22 phyla, 48 classes, 112 orders, 172 families, 285 genera and 408 species. The number of OTUs in indoor population was more than that in outdoor population, and there were differences between indoor and outdoor population. The difference between midgut and hindgut of the same population was not obvious. Proteobacteria was the most dominant genus of intestinal bacteria in both indoor and outdoor populations of Monochamus alternatus; Enterobacter was the most dominant genus of intestinal bacteria in outdoor populations and hindgut bacteria in indoor populations, Serratia was the most dominant genus of midgut bacteria in indoor populations. The results of alpha diversity showed that the richness of intestinal bacterial community in indoor populations was significantly higher than that in outdoor populations, and the beta diversity showed that the homogeneity and stability of intestinal bacterial community in outdoor populations were better than that in indoor populations. There was no significant difference in bacterial richness and diversity between the midgut and hindgut of outdoor and indoor populations. The results of functional prediction showed that the metabolic pathway was the most abundant in the intestinal bacteria of adults, which mainly consisted of carbohydrate metabolism and amino acid metabolism, and these bacteria were also able to degrade xenobiotics, terpenoids, polyketides and other secondary metabolites. There was no significant difference in functional abundance among different populations and different intestinal segments. [Conclusion] The community structure and difference of bacteria in the midgut and hindgut of adult Monochamus alternatus fed on different food were determined. The potential role of intestinal bacteria was understood, which provided a theoretical basis for further investigating the function of intestinal symbiosis bacteria of Monochamus alternatus.

    参考文献
    [1] Hao DJ, Yang JX, Dai HG. Research prowess and prospect on chemical ecology of Monochamus alternatus. Chinese Journal of Ecology, 2008, 27(7):1227-1233. (in Chinese) 郝德君, 杨剑霞, 戴华国. 松墨天牛化学生态学. 生态学杂志, 2008, 27(7):1227-1233.
    [2] Zhao BG, Futai K, Sutherland JR, Takeuchi Y. Pine wilt disease. Tokyo:Springer, 2008.
    [3] Ye JR. Epidemic status of Pine Wilt Disease in China and its prevention and control techniques and counter measures. Scientia Silvae Sinicae, 2019, 55(9):1-10. (in Chinese) 叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析. 林业科学, 2019, 55(9):1-10.
    [4] 萧刚柔. 中国森林昆虫. 北京:中国林业出版社, 1992.
    [5] 任骥. 松褐天牛室内饲养、幼虫龄期及成虫产卵特性的研究. 山东农业大学硕士学位论文, 2014.
    [6] Chen RX, Wang LJ, Lin T, Wei ZQ, Wang Y, Hao DJ. Rearing techniques of Monochamus alternatus Hope (Coleoptera:Cerambycidae) on artificial diets. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(1):199-202. (in Chinese) 陈瑞旭, 王露洁, 林涛, 韦志强, 王焱, 郝德君. 松墨天牛的人工饲育技术研究. 南京林业大学学报(自然科学版), 2017, 41(1):199-202.
    [7] Kim JM, Choi MY, Kim JW, Lee SA, Ahn JH, Song J, Kim SH, Weon HY. Effects of diet type, developmental stage, and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera). Journal of Microbiology, 2017, 55(1):21-30.
    [8] Dillon RJ, Dillon VM. The gut bacteria of insects:Nonpathogenic interactions. Annual Review of Entomology, 2004, 49:71-92.
    [9] Colman DR, Toolson EC, Takacs-Vesbach CD. Do diet and taxonomy influence insect gut bacterial communities?. Molecular Ecology, 2012, 21(20):5124-5137.
    [10] Engel P, Moran NA. The gut microbiota of insects-diversity in structure and function. Fems Microbiology Reviews, 2013, 37(5):699-735.
    [11] Tian XY, Song FP, Zhang J, Liu RM, Zhang XP, Duan JY, Shu CL. Diversity of gut bacteria in larval Protaetia brevitarsis (Coleoptera:Scarabaedia) fed on corn stalk. Acta Entomologica Sinica, 2017, 60(6):632-641. (in Chinese) 田小燕, 宋福平, 张杰, 刘荣梅, 张兴鹏, 段江燕, 束长龙. 饲喂玉米秸秆的白星花金龟幼虫肠道细菌多样性. 昆虫学报, 2017, 60(6):632-641.
    [12] Mei C, Fan S, Yang H. The strategies of isolation of insect gut microorganisms. Acta Microbiologica Sinica, 2018, 58(6):985-994. (in Chinese) 梅承, 范硕, 杨红. 昆虫肠道微生物分离培养策略及研究进展. 微生物学报, 2018, 58(6):985-994.
    [13] Dillon R, Charnley K. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Research in Microbiology, 2002, 153(8):503-509.
    [14] Broderick NA, Raffa KF, Goodman RM, Handelsman J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Applied and Environmental Microbiology, 2004, 70(1):293-300.
    [15] Hayashi A, Aoyagi H, Yoshimura T, Tanaka H. Development of novel method for screening microorganisms using symbiotic association between insect (Coptotermes formosanus Shiraki) and intestinal microorganisms. Journal of Bioscience and Bioengineering, 2007, 103(4):358-367.
    [16] Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A. Bacterial communities of diverse Drosophila species:ecological context of a host-microbe model system. PLoS Genetics, 2011, 7(9):e1002272.
    [17] Wei DF, Wang XJ, Yang J, Geng YX, Chen M. Analysis of the diversity and difference of intestinal bacteria in larvae Hyphantria cunea Drury (Lepidoptera:Arctiidae) on different diets. Journal of Environmental Entomology, 2017, 39(3):515-524. (in Chinese) 魏丹峰, 王秀吉, 杨锦, 耿涌鑫, 陈敏. 取食不同食料的美国白蛾幼虫肠道细菌多样性及差异性研究. 环境昆虫学报, 2017, 39(3):515-524.
    [18] Calderón-Cortés N, Quesada M, Watanabe H, Cano-Camacho H, Oyama K. Endogenous plant cell wall digestion:a key mechanism in insect evolution. Annual Review of Ecology, Evolution, and Systematics, 2012, 43(1):45-71.
    [19] Zhou JP, Huang HQ, Meng K, Shi PJ, Wang YR, Luo HY, Yang PL, Bai YG, Zhou ZG, Yao B. Molecular and biochemical characterization of a novel xylanase from the symbiotic Sphingobacterium sp. TN19. Applied Microbiology and Biotechnology, 2009, 85(2):323-333.
    [20] Geib SM, Del Mar Jimenez-Gasco M, Carlson JE, Tien M, Hoover K. Effect of host tree species on cellulase activity and bacterial community composition in the gut of larval Asian Longhorned beetle. Environmental Entomology, 2009, 38(3):686-699.
    [21] Raffa KF, Aukema BH, Erbilgin N, Klepzig KD, Wallin KF. Interactions among conifer terpenoids and bark beetles across multiple levels of scale:an attempt to understand links between population patterns and physiological processes. Recent Advances in Phytochemistry, 2005, 39:79-118.
    [22] Adams AS, Aylward FO, Adams SM, Erbilgin N, Aukema BH, Currie CR, Suen G, Raffa KF. Mountain pine beetles colonizing historical and naÏve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Applied and Environmental Microbiology, 2013, 79(11):3468-3475.
    [23] Berasategui A, Salem H, Paetz C, Santoro M, Gershenzon J, Kaltenpoth M, Schmidt A. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Molecular Ecology, 2017, 26(15):4099-4110.
    [24] Stewart CN Jr, Via LE. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. BioTechniques, 1993, 14(5):748-750.
    [25] Wu XQ, Xue Q, Xiang Y, Ding XL, Xu XL, Ye JR. Community and functional diversity of bacteria associated with propagative and dispersal forms of Bursaphelenchus xylophilus. Nematology, 2016, 18(10):1185-1198.
    [26] Magoč T, Salzberg SL. Flash:fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21):2957-2963.
    [27] Edgar RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10):996-998.
    [28] Wang Q, Garrity GM, Tiedje JM, Cole JR. NaÏve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007, 73(16):5261-5267.
    [29] Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009, 75(23):7537-7541.
    [30] Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 2013, 31(9):814-821.
    [31] Hu X, Li M, Raffa KF, Luo QY, Fu HJ, Wu SQ, Liang GH, Wang R, Zhang FP. Bacterial communities associated with the pine wilt disease vector Monochamus alternatus (Coleoptera:Cerambycidae) during different larval instars. Journal of Insect Science, 2017, 17(6):115.
    [32] Schloss PD, Delalibera I Jr, Handelsman J, Raffa KF. Bacteria associated with the guts of two wood-boring beetles:Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environmental Entomology, 2006, 35(3):625-629.
    [33] Park DS, Oh HW, Jeong WJ, Kim H, Park HY, Bae KS. A culture-based study of the bacterial communities within the guts of nine longicorn beetle species and their exo-enzyme producing properties for degrading xylan and pectin. Journal of Microbiology, 2007, 45(5):394-401.
    [34] Grünwald S, Pilhofer M, Höll W. Microbial associations in gut systems of woodand bark-inhabiting longhorned beetles[Coleoptera:Cerambycidae]. Systematic and Applied Microbiology, 2010, 33(1):25-34.
    [35] Rizzi A, Crotti E, Borruso L, Jucker C, Lupi D, Colombo M, Daffonchio D. Characterization of the bacterial community associated with larvae and adults of Anoplophora chinensis collected in Italy by culture and culture-independent methods. BioMed Research International, 2013, 2013:420287.
    [36] Vicente CSL, Nascimento FX, Espada M, Barbosa P, Hasegawa K, Mota M, Oliveira S. Characterization of bacterial communities associated with the pine sawyer beetle Monochamus galloprovincialis, the insect vector of the pinewood nematode Bursaphelenchus xylophilus. FEMS Microbiology Letters, 2013, 347(2):130-139.
    [37] Alves M, Pereira A, Matos P, Henriques J, Vicente C, Aikawa T, Hasegawa K, Nascimento F, Mota M, Correia A, Henriques I. Bacterial community associated to the pine wilt disease insect vectors Monochamus galloprovincialis and Monochamus alternatus. Scientific Reports,2016, 6:23908.
    [38] Lemke T, Stingl U, Egert M, Friedrich MW, Brune A. Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera:Scarabaeidae). Applied and Environmental Microbiology, 2003, 69(11):6650-6658.
    [39] Chapman RF, Simpson SJ, Douglas AE. The Insects:structure and function. 5th ed. Cambridge:Cambridge University Press, 2013.
    [40] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册. 北京:科学出版社, 2001.
    [41] Wei G, Bai L, Qu S, Wang SB. Insect microbiome and their potential application in the insect pest and vector-borne disease control. Acta Microbiologica Sinica, 2018, 58(6):1090-1102. (in Chinese) 魏舸, 白亮, 曲爽, 王四宝. 昆虫共生微生物在病虫害和疾病控制上的应用前景. 微生物学报, 2018, 58(6):1090-1102.
    [42] Douglas AE. Multiorganismal insects:diversity and function of resident microorganisms. Annual Review of Entomology, 2015, 60(1):17-34.
    [43] Adams L, Boopathy R. Isolation and characterization of enteric bacteria from the hindgut of Formosan termite. Bioresource Technology, 2005, 96(14):1592-1598.
    [44] Howe M, Keefover-Ring K, Raffa KF. Pine engravers carry bacterial communities whose members reduce concentrations of host monoterpenes with variable degrees of redundancy, specificity, and capability. Environmental Entomology, 2018, 47(3):638-645.
    [45] Hu X, Fu HJ, Li JN, Lin ZP, Zhang FP. Isolation and identification of cellulolytic bacteria associated with the gut of Monochamus alternatus larvae. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2018, 47(3):322-328. (in Chinese) 胡霞, 傅慧静, 李俊楠, 林中平, 张飞萍. 松墨天牛幼虫肠道纤维素降解细菌的分离与鉴定. 福建农林大学学报(自然科学版), 2018, 47(3):322-328.
    引证文献
引用本文

陈宏健,周杨,夏小洪,赵欣怡,乔恒,谈家金,郝德君. 松墨天牛成虫室内外种群肠道细菌的多样性及功能分析[J]. 微生物学报, 2021, 61(3): 683-694

复制
分享
文章指标
  • 点击次数:607
  • 下载次数: 1206
  • HTML阅读次数: 2267
  • 引用次数: 0
历史
  • 收稿日期:2020-05-19
  • 最后修改日期:2020-07-13
  • 在线发布日期: 2021-03-05
文章二维码