基于16S rDNA扩增子测序技术揭示真胃左方变位对奶牛粪便微生物的影响
作者:
基金项目:

甘肃省引导科技创新专项(GSCXZX-2019-1);甘肃省教育厅高校科技项目(2018C-15)


Revealing the impact of left displacement of the abomasum on fecal microbes of dairy cows by 16S rDNA amplicon sequencing technology
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 本试验旨在测定产后健康奶牛和罹患真胃左方变位(left displacement of the abomasum,LDA)奶牛粪便中微生物菌群的变化,以期探讨LDA发生与菌群的关联性,评估其对机体代谢的潜在影响。[方法] 采用16S rDNA高通量测序技术,测定10头健康奶牛(Health)、10头真胃左方变位奶牛(LDA)粪便中微生物16S rDNA V3-V4区序列,并对菌群群落结构和多样性进行比较,分析其与LDA发生的相关性。[结果] 多样性分析表明,Health组与LDA组奶牛的粪便中微生物多样性和群落组成存在较大的差异,其中LDA奶牛粪便微生物具有较高的物种丰度和种群差异性。对门、科、属3个分类水平上最大丰度排名前10的物种进行分析发现,LDA奶牛疣微菌门、蓝菌门、变形菌门、梭杆菌门、拟杆菌科、p-2534-18B5菌科、艰难杆菌科、梭杆菌科、螺旋菌属、5-7N15菌属和梭杆菌属的丰度显著升高(P<;0.05),而螺旋体门、TM7菌门、瘤胃球菌科、理研菌科、密螺旋体属的丰度显著下降(P<;0.05)。功能预测分析表明,LDA奶牛碳水化合物代谢和脂质代谢通路相关功能基因显著上调,而遗传信息处理相关功能基因显著下调。[结论] 本试验研究了健康奶牛和LDA奶牛粪便微生物的变化,为LDA的致病机理、早期诊断提供了理论依据与研究基础。

    Abstract:

    [Objective] Our study aims to measure the changes of microbial flora in feces of healthy postpartum cows and cows suffering from left displacement of the abomasum (LDA), so as to explore the relevance between LDA occurrence and the flora, and assess its potential impact on body metabolism. [Methods] We used 16S rDNA High-Throughput Sequencing technology to determine the 16S rDNA V3-V4 region sequence of microorganisms in the feces of 10 healthy cows and 10 cows with LDA. [Results] The diversity analysis indicated that there were significant differences in microbial diversity and community composition between healthy group and LDA group, and the fecal microbes of the LDA cows had higher species abundance and population differences. The analysis of the top 10 species with the largest abundance at the level of phyla, family, and genus showed that the abundances of Verrucomicrobia, Cyanobacteria, Proteobacteria, Fusobacteria, Bacteroides, p-2534-18B5, Mogibacteriaceae, Fusobacteriaceae, Oscillospira, 5-7N15 and Faecococcus in LDA cows increasedsignificantly (P<0.05), while the abundances of Spirochetes, TM7, Ruminococcaceae, Rikenellaceae and Treponema decreased significantly (P<0.05). Functional prediction analysis showed that the functional genes related to carbohydrate metabolism and lipid metabolism pathway in cows with LDA were greatly up-regulated, while those related to genetic information processing were significantly down regulated. [Conclusion] Our findings confirm that the changes of fecal microorganisms in dairy cows before and after LDA, and provide a foundation for a deeper understanding of the pathogenesis and early diagnosis of LDA.

    参考文献
    [1] Mueller K. Diagnosis, treatment and control of left displaced abomasum in cattle. In Practice, 2011, 33(9):470-481.
    [2] McArt JAA, Nydam DV, Overton MW. Hyperketonemia in early lactation dairy cattle:A deterministic estimate of component and total cost per case. Journal of Dairy Science, 2015, 98(3):2043-2054.
    [3] Caixeta LS, Herman JA, Johnson GW, McArt JAA. Herd-level monitoring and prevention of displaced abomasum in dairy cattle. Veterinary Clinics of North America:Food Animal Practice, 2018, 34(1):83-99.
    [4] Steinhoff U. Who controls the crowd? New findings and old questions about the intestinal microflora. Immunology Letters, 2005, 99(1):12-16.
    [5] Hu XY, Li SM, Fu YH, Zhang NS. Targeting gut microbiota as a possible therapy for mastitis. European Journal of Clinical Microbiology & Infectious Diseases, 2019, 38(8):1409-1423.
    [6] Pi Y, Gao K, Zhu WY. Advances in host-microbe metabolic axis. Acta Microbiologica Sinica, 2017, 57(2):161-169. (in Chinese) 皮宇, 高侃, 朱伟云. 动物宿主——肠道微生物代谢轴研究进展. 微生物学报, 2017, 57(2):161-169.
    [7] Ma C, Sun Z, Zeng BH, Huang S, Zhao J, Zhang Y, Su XQ, Xu J, Wei H, Zhang HP. Cow-to-mouse fecal transplantations suggest intestinal microbiome as one cause of mastitis. Microbiome, 2018, 6(1):200.
    [8] 黄云飞. 基于肠道微生物测序和灌服原花青素对奶牛酮病的研究. 广西大学博士学位论文, 2018.
    [9] Doll K, Sickinger M, Seeger T. New aspects in the pathogenesis of abomasal displacement. The Veterinary Journal, 2009, 181(2):90-96.
    [10] Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA. Topographical and temporal diversity of the human skin microbiome. Science, 2009, 324(5931):1190-1192.
    [11] Song ES, Jung SI, Park HJ, Seo KW, Son JH, Hong S, Shim M, Kim HB, Song KH. Comparison of fecal microbiota between german holstein dairy cows with and without left-sided displacement of the abomasum. Journal of Clinical Microbiology, 2016, 54(4):1140-1143.
    [12] Muñoz-Vargas L, Opiyo SO, Digianantonio R, Williams ML, Wijeratne A, Habing G. Fecal microbiome of periparturient dairy cattle and associations with the onset of Salmonella shedding. PLoS One, 2018, 13(5):e0196171.
    [13] Pitta DW, Kumar S, Vecchiarelli B, Shirley DJ, Bittinger K, Baker LD, Ferguson JD, Thomsen N. Temporal dynamics in the ruminal microbiome of dairy cows during the transition period. Journal of Animal Science, 2014, 92(9):4014-4022.
    [14] Huang S, Ji SK, Yan H, Hao YY, Zhang J, Wang YJ, Cao ZJ, Li SL. The day-to-day stability of the ruminal and fecal microbiota in lactating dairy cows. MicrobiologyOpen, 2020, 9(5):e990.
    [15] Shanks OC, Kelty CA, Archibeque S, Jenkins M, Newton RJ, McLellan SL, Huse SM, Sogin ML. Community structures of fecal bacteria in cattle from different animal feeding operations. Applied and Environmental Microbiology, 2011, 77(9):2992-3001.
    [16] Jami E, Mizrahi I. Composition and similarity of bovine rumen microbiota across individual animals. PLoS One, 2012, 7(3):e33306.
    [17] Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122):1027-1031.
    [18] Muller PA, Koscsó B, Rajani GM, Stevanovic K, Berres ML, Hashimoto D, Mortha A, Leboeuf M, Li XM, Mucida D, Stanley ER, Dahan S, Margolis KG, Gershon MD, Merad M, Bogunovic M. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell, 2014, 158(2):300-313.
    [19] Diaz Heijtz R, Wang SG, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S. Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7):3047-3052.
    [20] Schwartz GJ. The role of gastrointestinal vagal afferents in the control of food intake:current prospects. Nutrition, 2000, 16(10):866-873.
    [21] Shin NR, Whon TW, Bae JW. Proteobacteria:microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 2015, 33(9):496-503.
    [22] Guo W, Guo XJ, Zhou X, Li SN, Zhu BC. Effect of corn stalk fermented by complex bacterial on rumen bacteria diversity in sheep. Acta Veterinaria Et Zootechnica Sinica, 2018, 49(4):736-745. (in Chinese) 郭威, 郭晓军, 周贤, 李术娜, 朱宝成. 复合菌剂发酵玉米秸秆对绵羊瘤胃液细菌多样性的影响. 畜牧兽医学报, 2018, 49(4):736-745.
    [23] Gophna U, Konikoff T, Nielsen HB. Oscillospira and related bacteria-from metagenomic species to metabolic features. Environmental Microbiology, 2017, 19(3):835-841.
    [24] Bekele AZ, Koike S, Kobayashi Y. Phylogenetic diversity and dietary association of rumen Treponema revealed using group-specific 16S rRNA gene-based analysis. FEMS Microbiology Letters, 2011, 316(1):51-60.
    [25] Flint HJ, Bayer EA. Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Annals of the New York Academy of Sciences, 2008, 1125(1):280-288.
    [26] Dodd D, Mackie RI, Cann IKO. Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Molecular Microbiology, 2011, 79(2):292-304.
    [27] Mohammed R, Brink GE, Stevenson DM, Neumann AP, Beauchemin KA, Suen G, Weimer PJ. Bacterial communities in the rumen of Holstein heifers differ when fed orchardgrass as pasture vs. hay. Frontiers in Microbiology, 2014, 5:689.
    [28] Geirnaert A, Steyaert A, Eeckhaut V, Debruyne B, Arends JBA, Van Immerseel F, Boon N, Van de Wiele T. Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions. Anaerobe, 2014, 30:70-74.
    [29] Bo TB, Zhang XY, Wen J, Deng K, Qin XW, Wang DH. The microbiota-gut-brain interaction in regulating host metabolic adaptation to cold in male Brandt's voles (Lasiopodomys brandtii). The ISME Journal, 2019, 13(12):3037-3053.
    [30] Seifi HA, LeBlanc SJ, Leslie KE, Duffield TF. Metabolic predictors of post-partum disease and culling risk in dairy cattle. The Veterinary Journal, 2011, 188(2):216-220.
    [31] Liu ZX, Zhu XY, Wang JG, Wang XX, Li XW, Chen H, Yang WT, Liu GW. The research progress of dairy cow ketosis. China Animal Husbandry & Veterinary Medicine, 2012, 39(4):204-206. (in Chinese) 刘兆喜, 朱晓岩, 王建国, 王晓旭, 李心慰, 陈灰, 杨文涛, 刘国文. 奶牛酮病的研究进展. 中国畜牧兽医, 2012, 39(4):204-206.
    [32] LeBlanc SJ, Leslie KE, Duffield TF. Metabolic predictors of displaced abomasum in dairy cattle. Journal of Dairy Science, 2005, 88(1):159-170.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

雍康,罗正中,骆巧,杨庆稳,张传师,张勇,曹随忠. 基于16S rDNA扩增子测序技术揭示真胃左方变位对奶牛粪便微生物的影响[J]. 微生物学报, 2021, 61(3): 750-763

复制
分享
文章指标
  • 点击次数:527
  • 下载次数: 1069
  • HTML阅读次数: 2914
  • 引用次数: 0
历史
  • 收稿日期:2020-09-13
  • 最后修改日期:2020-10-29
  • 在线发布日期: 2021-03-05
文章二维码