马里亚纳海沟沉积物可培养异养细菌的多样性及其DMSP降解能力
作者:
基金项目:

国家重点研发计划(2018YFE0124100,2016YFA0601303);中央高校基本科研业务费专项(202072003);中国科学院海洋大科学研究中心项目(COMS2019Q10)


Diversity of culturable heterotrophic bacteria from sediments of the Mariana Trench and their ability to degrade dimethylsulfoniopropionate (DMSP)
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 马里亚纳海沟是地球上最深的海沟,具有超高静水压力、低温、无光等生境特征,蕴含独特的微生物资源。二甲基巯基丙酸内盐(dimethylsulphoniopropionate,DMSP)是海洋环境中最丰富的有机硫分子之一,海洋异养微生物可裂解DMSP产生“冷室气体”二甲基硫(dimethyl sulfide,DMS),在全球硫循环和气候变化中发挥着重要作用。本研究对马里亚纳海沟沉积物异养细菌进行分离鉴定,并研究其DMSP降解能力,为阐明深渊微生物的生命过程提供独特的微生物资源。[方法] 本文以马里亚纳海沟5个站位的沉积物为研究对象,利用3种常规异养菌培养基(2216E、R2A和TCBS)及2种异养菌富集培养基(TCBS肉汤和碱性蛋白胨水)在4℃、16℃和28℃下进行细菌分离培养,通过16S rRNA基因测序鉴定其分类地位,并对代表菌株进行DMSP降解能力检测。[结果] 共分离鉴定异养细菌1057株,分属于4个门、7个纲和76个属。γ-变形菌纲(Gammaproteobacteria)为优势菌群,占据可培养异养细菌总数的61.4%,假单胞菌属(Pseudomonas)和盐单胞菌属(Halomonas)为主要的优势属;变形菌门(Proteobacteria)相对丰度在沉积物各层样品中均占绝对优势。厚壁菌门(Firmicutes)相对丰度深层高于表层。碱性蛋白胨水和TCBS肉汤培养基分别对放线菌纲(Actinobacteria)和芽孢杆菌纲(Bacilli)具有更好的选择性;101株细菌与其最相似物种的16S rRNA基因相似度小于98.65%,为潜在新分类单元。本文进一步选取134株异养细菌进行DMSP降解能力测定,发现52株(38.8%)具DMSP裂解活性。[结论] 马里亚纳海沟沉积物中可培养细菌及DMSP降解菌株均具有较高的多样性,我们的研究为进一步开展深渊微生物生命过程研究提供了宝贵的微生物资源。

    Abstract:

    [Objective] The Mariana Trench is the deepest trench on earth. It has the characteristics of ultra-high hydrostatic pressure, low temperature and lack of light and contains unique microbial resources. Dimethylsulfoniopropionate (DMSP) is one of the marine's most abundant organosulfur molecules. Marine heterotrophic microorganisms can cleave DMSP and release “cooling gas” dimethyl sulfide (DMS), which plays an important role in driving global sulfur cycling and regulating global climate change. The heterotrophic bacteria from sediments of the Mariana Trench were isolated and identified and their ability to degrade DMSP was studied. Our study provides unique microbial resources for elucidating the life process of abyssal microorganisms. [Methods] Our study collected the sediments from five stations of the Mariana Trench as subject, using three kinds of conventional heterotrophic bacteria culture media (2216E, R2A and TCBS) and two kinds of heterotrophic bacteria enrichment culture media (TCBS broth and alkaline peptone water) for isolation and cultivation of bacteria at 4 ℃, 16 ℃ and 28 ℃, respectively. [Results] A total of 1057 strains were isolated and identified. And these isolates belonged to four phyla, seven classes and 76 genera. Gammaproteobacteria was the most abundant class, accounting for 61.4% of the total isolates. Pseudomonas and Halomonas were the most abundant genera; Proteobacteria was dominated in samples of all layers of sediments. The relative abundance of deep layer of Firmicutes was higher than that of the surface layer; The alkaline peptone water (AP) medium were found to have a better selectivity to Actinobacteria, and the TCBS broth medium were found to have a better selectivity to Bacilli; 101 strains were potential novel taxa of bacteria; In this study, the ability to degrade DMSP of 134 representative heterotrophic bacteria were tested, and 52 strains were found to have the ability to cleave DMSP and release DMS, accounting for 38.8% of the tested strains. [Conclusion] These results indicate that there is a high diversity of culturable bacteria and strains that have the ability to degrade DMSP from sediments of the Mariana Trench. Our research provides valuable microbial resources for further research on the life process of abyssal microorganisms.

    参考文献
    [1] Li HR, Yu Y, Zeng YX, Chen B, Ren DM. Phylogenetic analysis of bacterial diversity in Pacific Arctic sediments. Acta Microbiologica Sinica, 2006, 46(2):177-183. (in Chinese) 李会荣, 俞勇, 曾胤新, 陈波, 任大明. 北极太平洋扇区海洋沉积物细菌多样性的系统发育分析. 微生物学报, 2006, 46(2):177-183.
    [2] Zhang F, Lin J, Zhan WH. Variations in oceanic plate bending along the Mariana trench. Earth and Planetary Science Letters, 2014, 401:206-214.
    [3] Zhou ZY, Lin J, Behn MD, Olive JA. Mechanism for normal faulting in the subducting plate at the Mariana Trench. Geophysical Research Letters, 2015, 42(11):4309-4317.
    [4] Morita RY. Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria//The Survival of Vegetative Microbes. Cambridge:Cambridge University Press, 1976:279-298.
    [5] Takami H, Inoue A, Fuji F, Horikoshi K. Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiology Letters, 1997, 152(2):279-285.
    [6] Peoples LM, Donaldson S, Osuntokun O, Xia Q, Nelson A, Blanton J, Allen EE, Church MJ, Bartlett DH. Vertically distinct microbial communities in the Mariana and Kermadec trenches. PLoS One, 2018, 13(4):e0195102.
    [7] Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, Kikuchi T, Miyazaki J, Koba K, Yoshida N, Sunamura M, Takai K. Hadal biosphere:insight into the microbial ecosystem in the deepest ocean on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11):E1230-E1236.
    [8] Tarn J, Peoples LM, Hardy K, Cameron J, Bartlett DH. Identification of free-living and particle-associated microbial communities present in hadal regions of the Mariana Trench. Frontiers in Microbiology, 2016, 7:665.
    [9] Tian JW, Fan L, Liu HD, Liu JW, Li Y, Qin QL, Gong Z, Chen HT, Sun ZB, Zou L, Wang XC, Xu HZ, Bartlett D, Wang M, Zhang YZ, Zhang XH, Zhang CL. A nearly uniform distributional pattern of heterotrophic bacteria in the Mariana Trench interior. Deep Sea Research Part I:Oceanographic Research Papers, 2018, 142:116-126.
    [10] Liu JW, Zheng YF, Lin HY, Wang XC, Li M, Liu Y, Yu M, Zhao MX, Pedentchouk N, Lea-Smith DJ, Todd JD, Magill CR, Zhang WJ, Zhou S, Song DL, Zhong HH, Xin Y, Yu M, Tian JW, Zhang XH. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome, 2019, 7(1):47.
    [11] Rappé MS, Giovannoni SJ. The uncultured microbial majority. Annual Review of Microbiology, 2003, 57(1):369-394.
    [12] Amend JP, LaRowe DE. Ocean Sediments-an enormous but underappreciated microbial habitat. Microbe, 2016, 11(12):427-432.
    [13] Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Applied and Environmental Microbiology, 1998, 64(4):1510-1513.
    [14] Kettle AJ, Andreae MO. Flux of dimethylsulfide from the oceans:A comparison of updated data sets and flux models. Journal of Geophysical Research:Atmospheres, 2000, 105(D22):26793-26808.
    [15] Ksionzek KB, Lechtenfeld OJ, McCallister SL, Schmitt-Kopplin P, Geuer JK, Geibert W, Koch BP. Dissolved organic sulfur in the ocean:Biogeochemistry of a petagram inventory. Science, 2016, 354(6311):456-459.
    [16] Lovelock JE, Maggs RJ, Rasmussen RA. Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature, 1972, 237(5356):452-453.
    [17] Charlson RJ, Lovelock JE, Andreae MO, Warren SG. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 1987, 326(6114):655-661.
    [18] Ayers GP, Gras JL. Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air. Nature, 1991, 353(6347):834-835.
    [19] Andreae MO, Crutzen PJ. Atmospheric aerosols:Biogeochemical sources and role in atmospheric chemistry. Science, 1997, 276(5315):1052-1058.
    [20] Curson ARJ, Todd JD, Sullivan MJ, Johnston AWB. Catabolism of dimethylsulphoniopropionate:microorganisms, enzymes and genes. Nature Reviews Microbiology, 2011, 9(12):849-859.
    [21] Moran MA, Reisch CR, Kiene RP, Whitman WB. Genomic insights into bacterial DMSP transformations. Annual Review of Marine Science, 2012, 4:523-542.
    [22] Reisch CR, Moran MA, Whitman WB. Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Frontiers in Microbiology, 2011, 2:172.
    [23] Kiene RP, Linn LJ. The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater:tracer studies using 35S-DMSP. Geochimica et Cosmochimica Acta, 2000, 64(16):2797-2810.
    [24] 张晓华, 等. 海洋微生物学. 第2版. 北京:科学出版社, 2016:1-464.
    [25] Zheng YF, Wang JY, Zhou S, Zhang YH, Liu J, Xue CX, Williams BT, Zhao XX, Zhao L, Zhu XY, Sun C, Zhang HH, Xiao T, Yang GP, Todd JD, Zhang XH. Bacteria are important dimethylsulfoniopropionate producers in marine aphotic and high-pressure environments. Nature Communications, 2020, 11(1):4658.
    [26] Moore E, Arnscheidt A, Krüger A, Strömpl C, Mau M. Simplified protocols for the preparation of genomic DNA from bacterial cultures//Molecular Microbial Ecology Manual. Dordrecht:Kluwer Academic Publishers, 1999:1-15.
    [27] Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 1991, 173(2):697-703.
    [28] Du R, Yu M, Cheng JG, Zhang JJ, Tian XR, Zhang XH. Diversity and sulfur oxidation characteristics of cultivable sulfur oxidizing bacteria in hydrothermal fields of Okinawa Trough. Acta Microbiologica Sinica, 2019, 59(6):1036-1049. (in Chinese) 杜瑞, 于敏, 程景广, 张静静, 田晓荣, 张晓华. 冲绳海槽热液区可培养硫氧化细菌多样性及其硫氧化特性. 微生物学报, 2019, 59(6):1036-1049.
    [29] Curson ARJ, Liu J, Martínez AB, Green RT, Chan YH, Carrión O, Williams BT, Zhang SH, Yang GP, Page PCB, Zhang XH, Todd JD. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nature Microbiology, 2017, 2(5):17009.
    [30] Bienhold C, Zinger L, Boetius A, Ramette A. Diversity and biogeography of bathyal and abyssal seafloor bacteria. PLoS One, 2016, 11(1):e0148016.
    [31] Zhao XX, Liu JW, Zhou S, Zheng YF, Wu YH, Kogure K, Zhang XH. Diversity of culturable heterotrophic bacteria from the Mariana Trench and their ability to degrade macromolecules. Marine Life Science & Technology, 2020, 2(2):181-193.
    [32] 李昭. 南太平洋环流区深海可培养细菌的多样性研究以及两株海洋新菌的分类鉴定. 中国海洋大学博士学位论文, 2013.
    [33] Curson ARJ, Rogers R, Todd JD, Brearley CA, Johnston AWB. Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter sphaeroides. Environmental Microbiology, 2008, 10(3):757-767.
    [34] Curson ARJ, Williams BT, Pinchbeck BJ, Sims LP, Martínez AB, Rivera PPL, Kumaresan D, Mercadé E, Spurgin LG, Carrión O, Moxon S, Cattolico RA, Kuzhiumparambil U, Guagliardo P, Clode PL, Raina JB, Todd JD. DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nature Microbiology, 2018, 3(4):430-439.
    [35] Curson ARJ, Sullivan MJ, Todd JD, Johnston AWB. Identification of genes for dimethyl sulfide production in bacteria in the gut of Atlantic Herring (Clupea harengus). The ISME Journal, 2010, 4(1):144-146.
    [36] Todd JD, Curson ARJ, Nikolaidou-Katsaraidou N, Brearley CA, Watmough NJ, Chan Y, Page PCB, Sun L, Johnston AWB. Molecular dissection of bacterial acrylate catabolism-unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. Environmental Microbiology, 2010, 12(2):327-343.
    [37] Wagner C, Stadtman ER. Bacterial fermentation of dimethyl-β-propiothetin. Archives of Biochemistry and Biophysics, 1962, 98(2):331-336.
    [38] Williams BT, Cowles K, Martínez AB, Curson ARJ, Zheng YF, Liu JL, Newton-Payne S, Hind AJ, Li CY, Rivera PPL, Carrión O, Liu J, Spurgin LG, Brearley CA, Mackenzie BW, Pinchbeck BJ, Peng M, Pratscher J, Zhang XH, Zhang YZ, Murrell JC, Todd JD. Bacteria are important dimethylsulfoniopropionate producers in coastal sediments. Nature Microbiology, 2019, 4(11):1815-1825.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林钰,刘荣华,周顺,朱晓雨,王金燕,张晓华. 马里亚纳海沟沉积物可培养异养细菌的多样性及其DMSP降解能力[J]. 微生物学报, 2021, 61(4): 828-844

复制
分享
文章指标
  • 点击次数:529
  • 下载次数: 1681
  • HTML阅读次数: 1593
  • 引用次数: 0
历史
  • 收稿日期:2020-10-30
  • 最后修改日期:2020-12-30
  • 在线发布日期: 2021-05-12
文章二维码