石磺海牛共附生细菌的分离和活性菌株筛选
作者:
基金项目:

国家重点研发计划(2018YFA0902500);深圳市科技创新委员会项目(KQJSCX20170727101743831)


Isolation and identification of the symbiotic bacteria of Homoiodoris japonica and screen of bioactive metabolite producing bacteria
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 研究深圳大鹏半岛海域石磺海牛中可培养的共附生细菌的数量和种类,并对分离获得菌株的代谢产物进行活性筛选。[方法] 通过R2A平板培养、分离纯化和16S rRNA测序,分析鉴定石磺海牛中5个部位可培养细菌;使用分离菌株的菌液及发酵液上清,测定对群体感应信号分子降解的活性和抗生物膜活性。[结果] 从石磺海牛中共分离到215株细菌,归属于87个种,54个属,有16株菌疑似为新菌。分离获得的菌株分布于变形菌门(Proteobacteria,126株),拟杆菌门(Bacteroidetes,44株),厚壁菌门(Firmicutes,34株),放线菌门(Actinobacteria,10株)和浮霉菌门(Planctomycetes,1株)。石磺海牛卵中的细菌数量和种类最为多样。从分离的菌株中筛选出28株菌能够降解群体感应信号分子,8株菌具有抗生物膜活性。[结论] 首次报道了海洋无脊椎动物石磺海牛中具有丰富多样的可培养细菌,包含潜在的新微生物和天然产物资源,为今后研究石磺海牛共附生微生物提供了研究基础和参考。

    Abstract:

    [Objective] The present work aims to study the amounts and species of cultivable microbes and bioactive metabolite producing bacteria from a marine invertebrate collected in Shenzhen. [Methods] We dissected the invertebrate into five parts to isolated bacteria by R2A plate and identified them through the 16S rRNA sequence. Then use the culture broth and supernatant to screen the activity of degrading quorum-sensing signal molecules and anti-biofilm activity. [Results] A total of 216 strains of bacteria were isolated from the invertebrate, belonging to 87 species and 54 genera, and 16 strains were suspected to be new bacteria. Distributed in the phylum Proteobacteria (126 strains), Bacteroidetes (44 strains), Firmicutes (34 strains), Actinobacteria (10 strains), and Planctomycetes (1 strain). The number and species of bacteria in the eggs of the invertebrate were the most diverse. Twenty-eight strains were screened to degrade quorum-sensing signal molecules, and eight strains showed anti-biofilm activity. [Conclusion] It is the first report that the marine invertebrate Homoiodoris japonica-associated bacteria contains were abundant and diverse, including potential new species of bacteria and natural product resources, which may provide a research basis for future research on the Homoiodoris japonica-associated microbes.

    参考文献
    [1] Romano S, Jackson SA, Patry S, Dobson ADW. Extending the "one strain many compounds" (OSMAC) principle to marine microorganisms. Marine Drugs, 2018, 16(7):E244.
    [2] Puglisi MP, Sneed JM, Ritson-Williams R, Young R. Marine chemical ecology in benthic environments. Natural Product Reports, 2019, 36(3):410-429.
    [3] Molinski TF, Dalisay DS, Lievens SL, Saludes JP. Drug development from marine natural products. Nature Reviews Drug Discovery, 2009, 8(1):69-85.
    [4] Marris E. Marine natural products:drugs from the deep. Nature, 2006, 443(7114):904-905.
    [5] Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR. Marine natural products. Natural Product Reports, 2015, 32(2):116-211.
    [6] Liang X, Luo DM, Luesch H. Advances in exploring the therapeutic potential of marine natural products. Pharmacological Research, 2019, 147:104373.
    [7] Leal MC, Puga J, Serôdio J, Gomes NCM, Calado R. Trends in the discovery of new marine natural products from invertebrates over the last two decades-where and what are we bioprospecting? PLoS One, 2012, 7(1):e30580. DOI:10.1371/journal.pone.0030580.
    [8] Leal MC, Sheridan C, Osinga R, Dionísio G, Rocha RJM, Silva B, Rosa R, Calado R. Marine microorganism- invertebrate assemblages:perspectives to solve the "supply problem" in the initial steps of drug discovery. Marine Drugs, 2014, 12(7):3929-3952.
    [9] Hill RT, Fenical W. Pharmaceuticals from marine natural products:surge or ebb? Current Opinion in Biotechnology, 2010, 21(6):777-779.
    [10] Jensen PR, Fenical W. Strategies for the discovery of secondary metabolites from marine bacteria:ecological perspectives. Annual Review of Microbiology, 1994, 48:559-584.
    [11] Piel J. Metabolites from symbiotic bacteria. Natural Product Reports, 2009, 26(3):338-362.
    [12] Olson JB, Kellogg CA. Microbial ecology of corals, sponges, and algae in mesophotic coral environments. FEMS Microbiology Ecology, 2010, 73(1):17-30.
    [13] Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. FEMS Microbiology Ecology, 2006, 55(2):167-177.
    [14] Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology, 2007, 5(5):355-362.
    [15] Lindquist N. Chemical defense of early life stages of benthic marine invertebrates. Journal of Chemical Ecology, 2002, 28(10):1987-2000.
    [16] Shnit-Orland M, Kushmaro A. Coral mucus-associated bacteria:a possible first line of defense. FEMS Microbiology Ecology, 2009, 67(3):371-380.
    [17] Knobloch S, Jóhannsson R, Marteinsson V. Co-cultivation of the marine sponge Halichondria panicea and its associated microorganisms. Scientific Reports, 2019, 9:10403.
    [18] Knobloch S, Jóhannsson R, Marteinsson V. Bacterial diversity in the marine sponge Halichondria panicea from Icelandic waters and host-specificity of its dominant symbiont "Candidatus Halichondribacter symbioticus". FEMS Microbiology Ecology, 2019, 95(1):fiy220.
    [19] Wibowo JT, Kellermann MY, Versluis D, Putra MY, Murniasih T, Mohr KI, Wink J, Engelmann M, Praditya DF, Steinmann E, Schupp PJ. Biotechnological potential of bacteria isolated from the sea cucumber Holothuria leucospilota and Stichopus vastus from Lampung, Indonesia. Marine Drugs, 2019, 17(11):635.
    [20] Lopanik NB, Targett NM, Lindquist N. Isolation of two polyketide synthase gene fragments from the uncultured microbial symbiont of the marine bryozoan Bugula neritina. Applied and Environmental Microbiology, 2006, 72(12):7941-7944.
    [21] Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and coral-associated microorganisms:a prolific source of potential bioactive natural products. Marine Drugs, 2019, 17(8):E468.
    [22] Yoshizawa S, Tsuruya Y, Fukui YH, Sawabe T, Yokota A, Kogure K, Higgins M, Carson J, Thompson FL. Vibrio jasicida sp. nov., a member of the Harveyi clade, isolated from marine animals (packhorse lobster, abalone and Atlantic salmon). International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt_8):1864-1870.
    [23] Romanenko LA, Zhukova NV, Rohde M, Lysenko AM, Mikhailov VV, Stackebrandt E. Glaciecola mesophila sp. nov., a novel marine agar-digesting bacterium. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(3):647-651.
    [24] Ivanova EP, Sawabe T, Lysenko AM, Gorshkova NM, Svetashev VI, Nicolau DV, Yumoto N, Taguchi T, Yoshikawa S, Christen R, Mikhailov VV. Pseudoalteromonas ruthenica sp. nov., isolated from marine invertebrates. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(Pt 1):235-240.
    [25] Ivanova EP, Nedashkovskaya OI, Sawabe T, Zhukova NV, Frolova GM, Nicolau DV, Mikhailov VV, Bowman JP. Shewanella affinis sp. nov., isolated from marine invertebrates. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(Pt 4):1089-1093.
    [26] Whiteley M, Diggle SP, Peter Greenberg E. Progress in and promise of bacterial quorum sensing research. Nature, 2017, 551(7680):313-320.
    [27] Borges A, Simões M. Quorum sensing inhibition by marine bacteria. Marine Drugs, 2019, 17(7):427.
    [28] Zhao J, Li XY, Hou XY, Quan CS, Chen M. Widespread existence of quorum sensing inhibitors in marine bacteria:potential drugs to combat pathogens with novel strategies. Marine Drugs, 2019, 17(5):275.
    [29] Stewart PS, William Costerton J. Antibiotic resistance of bacteria in biofilms. The Lancet, 2001, 358(9276):135-138.
    [30] Defoirdt T. Quorum-sensing systems as targets for antivirulence therapy. Trends in Microbiology, 2018, 26(4):313-328.
    [31] Chen JW, Wang BX, Lu YJ, Guo YQ, Sun JD, Wei B, Zhang HW, Wang H. Quorum sensing inhibitors from marine microorganisms and their synthetic derivatives. Marine Drugs, 2019, 17(2):E80.
    [32] You JL, Xue XL, Cao LX, Lu X, Wang J, Zhang LX, Zhou SN. Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Applied Microbiology and Biotechnology, 2007, 76(5):1137-1144.
    [33] Bakkiyaraj D, Karutha Pandian ST. In vitro and in vivo antibiofilm activity of a coral associated actinomycete against drug resistant Staphylococcus aureus biofilms. Biofouling, 2010, 26(6):711-717.
    [34] Khan F, Oloketuyi SF, Kim YM. Diversity of bacteria and bacterial products as antibiofilm and antiquorum sensing drugs against pathogenic bacteria. Current Drug Targets, 2019, 20(11):1156-1179.
    [35] Hogg JC, Lehane MJ. Identification of bacterial species associated with the sheep scab mite (Psoroptes ovis) by using amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1999, 65(9):4227-4229.
    [36] Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBioCloud:a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5):1613-1617.
    [37] Garge SS, Nerurkar AS. Attenuation of quorum sensing regulated virulence of Pectobacterium carotovorum subsp. carotovorum through an AHL lactonase produced by Lysinibacillus sp. Gs50. PLoS One, 2016, 11(12):e0167344. DOI:10.1371/journal.pone.0167344.
    [38] Zhao RY, Cheng JM, Zhao DD. Record on Opisthobranchia from the inter-tidal zone of Dalian. Journal of Northeast Normal University, 1981, 13(1):43-50. (in Chinese) 赵汝翼, 程济民, 赵大东. 大连潮间带后鳃类软体动物记录. 东北师大学报:自然科学版, 1981, 13(1):43-50.
    [39] Kaeberlein T, Lewis K, Epstein SS. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science, 2002, 296(5570):1127-1129.
    [40] Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(21):5970-5975.
    [41] Zhang ZY, Ding LJ, He S. Research progress on in situ cultivation of uncultured microorganisms. Natural Product Research and Development, 2018, 30(5):907-913. (in Chinese) 张作艳, 丁立建, 何山. 未培养微生物原位培养技术研究进展. 天然产物研究与开发, 2018, 30(5):907-913.
    [42] Guo B, Wu XL, Qian Y. Approaches for increasing the culturability of microorganisms. Acta Microbiologica Sinica, 2006, 46(3):508-511. (in Chinese) 郭斌, 吴晓磊, 钱易. 提高微生物可培养性的方法和措施. 微生物学报, 2006, 46(3):508-511.
    [43] Fan NS, Qi R, Yang M. Current technical progresses in the cultivation for uncultured microorganism. Chinese Journal of Applied and Environmental Biology, 2016, 22(3):524-530. (in Chinese) 范念斯, 齐嵘, 杨敏. 未培养微生物的培养方法进展. 应用与环境生物学报, 2016, 22(3):524-530.
    [44] Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, 1985, 49(1):1-7.
    [45] Oren A. Pyruvate:a key nutrient in hypersaline environments? Microorganisms, 2015, 3(3):407-416.
    [46] Bloomfield SF, Stewart GS, Dodd CE, Booth IR, Power EG. The viable but non-culturable phenomenon explained? Microbiology:Reading, England, 1998, 144(Pt 1):1-3.
    [47] Mizunoe Y, Wai SN, Takade A, Yoshida SI. Restoration of culturability of starvation-stressed and low-temperature- stressed Escherichia coli O157 cells by using H2O2- degrading compounds. Archives of Microbiology, 1999, 172(1):63-67.
    [48] Gao ZH, Ruan SL, Huang YX, Lv YY, Qiu LH. Paraburkholderia phosphatilytica sp. nov., a phosphate-solubilizing bacterium isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(1):196-202.
    [49] Quan XT, Liu QZ, Siddiqi MZ, Im WT. Caballeronia ginsengisoli sp. nov., isolated from ginseng cultivating soil. Archives of Microbiology, 2019, 201(4):443-449.
    [50] Sun HJ, Huang HQ, Zhu J, Sun QG, Yu ZH, Bao SX. Isolation and identification of two bacterial strains from marine sponge. Journal of Microbiology, 2010, 30(3):1-4. (in Chinese) 孙慧洁, 黄惠琴, 朱军, 孙前光, 余中华, 鲍时翔. 2株海绵细菌的分离与鉴定. 微生物学杂志, 2010, 30(3):1-4.
    [51] Lü NN, Shen ZZ, Tao CY, Ou YN, Wang BB, Ruan YZ, Li R, Shen QR. The characteristics of culturable bacterial community in soils and tissue parts of banana. Journal of Nanjing Agricultural University, 2019, 42(6):1088-1097. (in Chinese) 吕娜娜, 沈宗专, 陶成圆, 欧燕楠, 王蓓蓓, 阮云泽, 李荣, 沈其荣. 蕉园土壤及香蕉植株不同组织可培养细菌的群落特征. 南京农业大学学报, 2019, 42(6):1088-1097.
    [52] Miao TT, Xing X, Du ZJ, Chen GJ. Isolation and phylogenetic analysis of associated bacteria from the styela Clava. Advances in Marine Science, 2012, 30(1):111-118. (in Chinese) 苗婷婷, 邢翔, 杜宗军, 陈冠军. 柄海鞘共附生细菌的分离培养与系统发育多样性研究. 海洋科学进展, 2012, 30(1):111-118.
    [53] Hou ZM, Chen LC, Wang FW. Diversity of cultivable endophytic microbes isolated from oyster. Food Science and Technology, 2016, 41(7):20-24. (in Chinese) 侯竹美, 陈廉晨, 王凤舞. 牡蛎共附生可培养微生物多样性的研究. 食品科技, 2016, 41(7):20-24.
    [54] Li XM, Jiang HR, Yin XH, Liu XL, Li SB. Isolation and identification of cultivable microbes to screen bioactive metabolite producing bacteria from Sipunculus nudus in the Beibu Gulf of China. Acta Microbiologica Sinica, 2020, 60(10):2265-2276. (in Chinese) 李小媚, 江虹锐, 尹秀华, 刘小玲, 李树波. 中国北部湾光裸方格星虫可培养微生物的分离鉴定及其活性代谢物产生菌筛选. 微生物学报, 2020, 60(10):2265-2276.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

梁锦有,张骏梁,郑晓丽,陈烁钿,杨鹏,廖孟滨,徐颖. 石磺海牛共附生细菌的分离和活性菌株筛选[J]. 微生物学报, 2021, 61(4): 862-874

复制
分享
文章指标
  • 点击次数:396
  • 下载次数: 1085
  • HTML阅读次数: 1347
  • 引用次数: 0
历史
  • 收稿日期:2020-12-15
  • 最后修改日期:2021-02-10
  • 在线发布日期: 2021-05-12
文章二维码