脱落酸对丛枝菌根真菌侵染和产孢的调控效应研究
作者:
基金项目:

广东省科技创新战略专项资金(重点领域研发计划)(2018B020205001);国家自然科学基金(42077040);广东省科学院“千名博士(后)计划”引进专项(2021GDASYL-20210103023)


The regulatory effect of abscisic acid on colonization and sporulation of arbuscular mycorrhizal fungus
Author:
  • Xiaodi Liu

    Xiaodi Liu

    Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong Province, China;Guangdong Key Laboratory of Microbial Signaling and Disease Control Laboratory, College of Horticulture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Zengwei Feng

    Zengwei Feng

    Guangdong Key Laboratory of Microbial Signaling and Disease Control Laboratory, College of Horticulture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Honghui Zhu

    Honghui Zhu

    Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Qing Yao

    Qing Yao

    Guangdong Key Laboratory of Microbial Signaling and Disease Control Laboratory, College of Horticulture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    [目的] 揭示脱落酸(ABA)对丛枝菌根(AM)真菌侵染和产孢的影响,建立利用外源ABA促进孢子产量的高效菌剂扩繁方法。[方法] 利用番茄毛状根和AM真菌Rhizophagus irregularis DAOM 197198建立双重培养体系,通过外源施用ABA、赤霉素(GA)或者使用ABA、GA的缺陷突变体,染色观察菌根侵染,荧光定量PCR测定丛枝发育和脂质合成运输相关基因的表达,统计丛枝和孢子的数量,从而揭示ABA对AM真菌侵染和产孢的影响。[结果] ABA缺陷突变体not中的F%(侵染频率)、a%(丛枝丰度)、丛枝数量,以及丛枝发育特异性相关基因EXO70A1-like(LOC101253481)、脂质合成运输相关基因RAM2STR2的表达均显著低于其野生型MT;外源施用ABA显著促进了F%、M%(侵染强度)、丛枝数量、孢子产量,以及脂质合成运输相关基因RAM2STR2的表达,外源添加ABA处理的孢子产量约为不添加处理的4.5倍;外源GA处理极显著抑制了菌根侵染的所有指标和孢子产量;GA缺陷突变体gib3与其野生型MM的AM真菌侵染之间没有显著差异,但gib3的孢子产量显著高于MM。[结论] ABA通过促进脂质的合成和运输,提高AM真菌的侵染和丛枝形成,进而增加AM真菌的孢子产量。

    Abstract:

    [Objective] To reveal the effects of abscisic acid (ABA) on the colonization and sporulation of arbuscular mycorrhiza (AM) fungi, and to establish a highly efficient propagation methods by promoting spore production with exogenous ABA. [Methods] We established the dual culture system with tomato hairy roots and AM fungus Rhizophagus irregularis DAOM 197198, and the exogenous ABA and gibberellin (GA) were applied, or the deficient mutants of ABA and GA were employed. The mycorrhizal colonization was observed after staining, the expression of genes involved in the development of arbuscules and the synthesis and transfer of lipids were measured with qRCR, and the numbers of arbuscules and spores were counted, in order to reveal the effects of ABA on the colonization and sporulation of AM fungus. [Results] In the ABA-deficient mutant not, F% (mycorrhizal frequency), a% (arbuscular abundance), number of arbuscules, and the expression of arbuscule development-specific gene EXO70A1-like (LOC101253481) and the lipid synthesis and transfer related genes RAM2 and STR2 were significantly lower than those in the wild-type MT. Exogenous application of ABA significantly promoted F%, M% (mycorrhizal intensity), number of arbuscules, spore production, and the expression of RAM2 and STR2. The spore production applied with exogenous ABA was approximately 4.5 times of that without application. Exogenous GA significantly inhibited all parameters of mycorrhizal colonization and spore production. The spore production of GA-deficient mutant gib3 was significantly higher than that of the wild-type MM, although there was no significant difference in mycorrhizal colonization between gib3 and MM. [Conclusion] By promoting the lipid synthesis and transfer, ABA increases the colonization and arbuscular formation of AM fungi, and further enhances AM fungal sporulation.

    参考文献
    [1] Aroca R, Porcel R, Ruiz-Lozano JM. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytologist, 2007, 173(4):808-816.
    [2] Seguel A, Cumming JR, Klugh-Stewart K, Cornejo P, Borie F. The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils:a review. Mycorrhiza, 2013, 23(3):167-183.
    [3] Miransari M, Abbasipour H, Karimi J, Zadeh MRA, Saeidi A. Arbuscular mycorrhizal fungi and alleviation of soil stresses. Plant Biology, 2010, 12(4):563-569.
    [4] Feng Z, Liu X, Feng G, Zhu H, Yao Q. Linking lipid transfer with reduced arbuscule formation in tomato roots colonized by arbuscular mycorrhizal fungus under low pH stress. Environmental Microbiology, 2020, 22(3):1036-1051.
    [5] Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 2017, 356(6343):1172-1175.
    [6] Luginbuehl LH, Oldroyd GED. Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants. Current Biology, 2017, 27(17):R952-R963.
    [7] Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(5):1720-1725.
    [8] Kobae Y, Gutjahr C, Paszkowski U, Kojima T, Fujiwara T, Hata S. Lipid droplets of arbuscular mycorrhizal fungi emerge in concert with arbuscule collapse. Plant and Cell Physiology, 2014, 55(11):1945-1953.
    [9] Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo Bote JA, García Garrido JM. Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytologist, 2007, 175(3):554-564.
    [10] Liu X, Feng Z, Zhu H, Yao Q. Exogenous abscisic acid and root volatiles increase sporulation of Rhizophagus irregularis DAOM 197198 in asymbiotic and pre-symbiotic status. Mycorrhiza, 2019, 29(6):581-589.
    [11] Murcia G, Pontin M, Piccoli P. Role of ABA and Gibberellin A3 on gene expression pattern of sugar transporters and invertases in Vitis vinifera cv. Malbec during berry ripening. Plant Growth Regulation, 2018, 84(2):275-283.
    [12] Martín-Rodríguez JÁ, Ocampo JA, Molinero-Rosales N, Tarkowská D, Ruíz-Rivero O, García-Garrido JM. Role of gibberellins during arbuscular mycorrhizal formation in tomato:new insights revealed by endogenous quantification and genetic analysis of their metabolism in mycorrhizal roots. Physiologia Plantarum, 2015, 154(1):66-81.
    [13] López-Ráez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TDH, Thompson AJ, Ruyter-Spira C, Bouwmeester H. Does abscisic acid affect strigolactone biosynthesis? New Phytologist, 2010, 187(2):343-354.
    [14] Declerck S, Dupré de Boulois H, Bivort C, Delvaux B. Extraradical mycelium of the arbuscular mycorrhizal fungus Glomus lamellosum can take up, accumulate and translocate radiocaesium under root-organ culture conditions. Environmental Microbiology, 2003, 5(6):510-516.
    [15] Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 1970, 55(1):158-161.
    [16] Trouvelot A, Kough JL, Gianinazzi-Pearson V. Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methodes d'estimation ayant une significantion fonctionnelle.//Mycorrhizae:Physiology and Genetics, INRA:Paris, France, 1986:217-221.
    [17] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4):402-408.
    [18] Chen A, Hu J, Sun S, Xu G. Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytologist, 2007, 173(4):817-831.
    [19] Liu X, Feng Z, Zhao Z, Zhu H, Yao Q. Acidic soil inhibits the functionality of arbuscular mycorrhizal fungi by reducing arbuscule formation in tomato roots. Soil Science and Plant Nutrition, 2020, 66(2):275-284.
    [20] Aroca R, Alguacil MD, Vernieri P, Ruiz-Lozano JM. Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (sitiens). Microbial Ecology, 2008, 56(4):704-719.
    [21] Martín Rodriguez JÁ, León Morcillo R, Vierheilig H, Antonio Ocampo J, Ludwig-Müller J, García Garrido JM. Mycorrhization of the notabilis and sitiens tomato mutants in relation to abscisic acid and ethylene contents. Journal of Plant Physiology, 2010, 167(8):606-613.
    [22] Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B, Eastmond P, Schultze M, Kamoun S, Oldroyd GED. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Current Biology, 2012, 22(23):2242-2246.
    [23] Kobae Y, Hata S. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Plant and Cell Physiology, 2010, 51(3):341-353.
    [24] van Aarle IM, Olsson PA, Söderström B. Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytologist, 2002, 155(1):173-182.
    [25] Feng Z, Liu X, Zhu H, Yao Q. Responses of arbuscular mycorrhizal symbiosis to abiotic stress:a lipid-centric perspective. Frontiers in Plant Science, 2020, 11:578919.
    [26] Ren CG, Kong CC, Xie ZH. Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biology, 2018, 18(1):74.
    相似文献
    引证文献
引用本文

刘晓迪,冯曾威,朱红惠,姚青. 脱落酸对丛枝菌根真菌侵染和产孢的调控效应研究[J]. 微生物学报, 2021, 61(4): 935-945

复制
分享
文章指标
  • 点击次数:411
  • 下载次数: 1185
  • HTML阅读次数: 1276
  • 引用次数: 0
历史
  • 收稿日期:2020-10-20
  • 最后修改日期:2020-12-12
  • 在线发布日期: 2021-05-12
文章二维码