厌氧丁草胺降解菌BAD-20的分离鉴定及降解特性研究
作者:
基金项目:

国家自然科学基金(31770117)


Isolation, identification and degradation characteristics of an anaerobic butachlor-degrading bacterium BAD-20
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 分离并鉴定能够降解除草剂丁草胺的厌氧微生物菌株,研究其厌氧降解丁草胺的特性和代谢途径,为深入研究丁草胺厌氧降解机制提供依据。[方法] 以丁草胺为碳源作为选择压力从水稻田土壤中富集驯化丁草胺降解菌,利用16S rRNA基因系统发育分析结合菌株培养特征对降解菌株进行初步鉴定,利用液相色谱-时间飞行质谱(LC-TOF-MS)检测菌株降解丁草胺的代谢产物。[结果] 筛选到一株降解丁草胺的厌氧细菌,命名为BAD-20,初步鉴定为嗜蛋白质菌属(Proteiniphilum),菌株BAD-20降解丁草胺的最适条件为温度30-35℃、pH 7.5-8.0和0-0.5% NaCl,在有氧条件下该菌不能降解丁草胺。最适条件下,菌株BAD-20在10 d降解90%的20 mg/L丁草胺。菌株BAD-20还能降解甲草胺、乙草胺、丙草胺,降解效率从高到低依次为甲草胺 >乙草胺 > 丙草胺 > 丁草胺,对这些氯乙酰胺除草剂的降解动力学符合一级动力学方程。鉴定到2个丁草胺降解代谢产物,分别是N-(2,6-二乙基苯基)-N-(丁氧甲基)乙酰胺(DEPBMA)和N-(2,6-二乙基苯基)乙酰胺(DEPA),表明菌株BAD-20降解丁草胺的起始步骤为脱氯,随后脱去N-丁氧甲基。[结论] 本研究富集分离到一株降解丁草胺的厌氧细菌嗜蛋白质菌属(Proteiniphilum) BAD-20,为深入研究丁草胺厌氧降解机制及研发含丁草胺废水厌氧生物处理技术提供依据。

    Abstract:

    [Objective] The aim of this study was to isolate anaerobic bacteria capable of degrading butachlor. [Methods] By enrichment and acclimation method using butachlor as carbon source for enrichment, we screened an anaerobic butachlor-degrading bacterium from paddy soil. The isolated strain was preliminarily identified based on morphological and biochemical characteristics as well as 16S rRNA phylogenetic analysis, and the metabolites of butachlor degradation were identified by liquid chromatography-time of flight mass spectrometry. [Results] An anaerobic bacterium designated as BAD-20 was screened and identified as Proteiniphilum. The optimum conditions for butachlor degradation by strain BAD-20 were 30-35 ℃, pH 7.5-8.0 and 0-0.5% NaCl. Under the optimal conditions, 90% butachlor was degraded within 10 days by Proteiniphilum sp. BAD-20. Under aerobic conditions, the stain lost the ability to degrade butachlor. Proteiniphilum sp. BAD-20 could also degrade alachlor, acetochlor and propionate with the degradation efficiency following the order: alachlor > acetochlor > propranolol > butachlor. The degradation kinetics to these chloroacetamide herbicides fit to a first-order kinetic equation. Two metabolites, N-(2,6-diethylphenyl)-N-(butoxymethyl)acetanilide and N-(2,6-diethylphenyl)acetamide, were identified, indicating that the initial two steps of butachlor degradation are dechlorination and dealkylation. [Conclusion] An anaerobic butachlor-degrading bacterium BAD-20 was enriched and isolated from paddy soil and identified as Proteiniphilum. This study provides a basis for further study on the anaerobic catabolism of butachlor and the development of anaerobic biological treatment technology for butachlor-containing wastewater.

    参考文献
    [1] 刘长令. 世界农药大全-除草剂卷. 北京:化学工业出版社, 2002.
    [2] Jiang ZP, Gu WZ. Research progress of chloroacetamide herbicides. Shandong Pesticide News, 2010(3):27-28. (in Chinese) 江忠萍, 谷文喆. 酰胺类除草剂研究进展. 山东农药信息, 2010(3):27-28.
    [3] Lu MR. Market situation and future prospect of amide herbicides at home and abroad.. Pesticide Market News, 2009(16):11-13. (in Chinese) 陆明若. 酰胺类除草剂国内外市场状况及未来前景. 农药市场信息, 2009(16):11-13.
    [4] EPA US. Report of the Food Quality Protection Act (FQPA) tolerance reassessment progress and risk management decision (TRED) for acetochlor. Report EPA738-R-00-009. US Environmental Protection Agency. Washington, DC. 2006; http://www.epa.gov/pesticides/reregistration/REDs/acetochlor_tred.pdf.
    [5] Xu HJ, He HB, Wu YY, Liu N, Zhang XD. Environmental behavior and ecological effect of chloroacetamide herbicides in terrestrial ecosystem. Chinese Journal of Soil Science, 2009, 40(5):1226-1232. (in Chinese) 徐会娟, 何红波, 武叶叶, 刘宁, 张旭东. 氯乙酰胺类除草剂的环境行为和生态效应研究. 土壤通报, 2009, 40(5):1226-1232.
    [6] Zhao YH, Mei QZ, Chen MC, Min H. Effect of butachlor on CH4 emission and anaerobes in paddy soil. Acta Microbiologica Sinica, 1997, 37(6):477-479. (in Chinese) 赵宇华, 梅其志, 陈美慈, 闵航. 丁草胺对水稻土甲烷释放和厌氧细菌的影响. 微生物学报, 1997, 37(6):477-479.
    [7] Deng X, Liao XL, Tang QF. Effects of methamidophos and acetochlor on population and activity of methanogens. Rural Eco-Environment, 2004, 20(3):56-59. (in Chinese) 邓晓, 廖晓兰, 唐群锋. 甲胺磷和乙草胺对产甲烷菌种群数量及其活性的影响. 农村生态环境, 2004, 20(3):56-59.
    [8] Seghers D, Verthé K, Reheul D, Bulcke R, Siciliano SD, Verstraete W, Top EM. Effect of long-term herbicide applications on the bacterial community structure and function in an agricultural soil. FEMS Microbiology Ecology, 2003, 46(2):139-146.
    [9] Abu-Qare AW, Duncan HJ. Herbicide safeners:uses, limitations, metabolism, and mechanisms of action. Chemosphere, 2002, 48(9):965-974.
    [10] Han YJ, Yan CX, He FL, Shi N, Zhao CS. Study of butachlor on safety in early stage of rice. Journal of Northeast Agricultural University, 2007, 38(5):586-589. (in Chinese) 韩玉军, 闫春秀, 何付丽, 史娜, 赵长山. 丁草胺对水稻安全性影响的研究. 东北农业大学学报, 2007, 38(5):586-589.
    [11] Liu WX, Chen YQ, Kou YB, Guo HW, Chang L. Effects of individual and combined pollution of cadmium and butachlor on growth of amaranth. Henan Science, 2009, 27(3):305-308. (in Chinese) 刘文霞, 陈元琦, 寇渊博, 郭华武, 常乐. 镉、丁草胺单一及复合污染对苋菜生长的影响. 河南科学, 2009, 27(3):305-308.
    [12] Liu B, Guan CH, Wang XF, Xie LH. Analyzing the causes of and solutions for crop injury by herbicides commonly used in northeast China. Agrochemicals, 2006, 45(6):368-373. (in Chinese) 刘波, 关成宏, 王险峰, 谢丽华. 我国东北地区常见除草剂药害原因分析与解决方法. 农药, 2006, 45(6):368-373.
    [13] Zheng HH, Ye CM. Hydrolysis of chloroacetanilide herbicidesacetochidr and butachlor. Environmental Chemistry, 2001, 20(2):168-171. (in Chinese) 郑和辉, 叶常明. 乙草胺和丁草胺的水解及其动力学. 环境化学, 2001, 20(2):168-171.
    [14] Zheng HH, Ye CM. Photodegradation of acetochlor and butachlor in soil. Environmental Chemistry, 2002, 21(2):117-122. (in Chinese) 郑和辉, 叶常明. 乙草胺和丁草胺在土壤中的紫外光化学降解. 环境化学, 2002, 21(2):117-122.
    [15] Chu XQ, Pang GH, Fang H, Wang XG, Gao CM, Yu YL. Isolation, identification and characteristics of a butachlor-degrading bacterium. Journal of Agro-Environment Science, 2009, 28(1):145-150. (in Chinese) 楚小强, 庞国辉, 方华, 王秀国, 高春明, 虞云龙. 丁草胺降解菌的分离鉴定及降解特性的研究. 农业环境科学学报, 2009, 28(1):145-150.
    [16] Li C, Gu GB, Liu S. Isolation and its degradability of high efficiency butachlor fungi. Journal of Agro-Environmental Science, 2004, 23(3):611-614. (in Chinese) 李川, 古国榜, 柳松. 丁草胺高效真菌的分离及性能研究. 农业环境科学学报, 2004, 23(3):611-614.
    [17] Li YC, Xiong MH, Xiao J, Li CY. Isolation and characteristics of a butachlor degradation bacterium. Microbiology China, 2009, 36(8):1178-1182. (in Chinese) 李艳春, 熊明华, 肖晶, 李春艳. 一株丁草胺降解菌的分离鉴定及其降解特性的研究. 微生物学通报, 2009, 36(8):1178-1182.
    [18] Ni YY, Zheng JW, Zhang J, Wang BZ, He J, Li SP. Isolation of chloracetanilide herbicides-degrading bacterium Y3B-1 and its degradability to chloracetanilide herbicides. Chinese Journal of Applied & Environmental Biology, 2011, 17(5):711-716. (in Chinese) 倪盈盈, 郑金伟, 张隽, 王保站, 何健, 李顺鹏. 氯代酰胺类除草剂降解菌的分离及降解性能. 应用与环境生物学报, 2011, 17(5):711-716.
    [19] Wu XJ, Yue YD, Hua RM, Tang F. Isolation of effectively butachlor degradating bacterium. Chinese Journal of Applied and Environmental Biology, 2000, 6(6):593-596. (in Chinese) 吴新杰, 岳永德, 花日茂, 汤锋. 丁草胺高效降解细菌的分离. 应用与环境生物学报, 2000, 6(6):593-596.
    [20] Chen Q, Zhang J, Wang CH, Jiang J, Kwon SW, Sun LN, Shen WB, He J. Novosphingobium chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt8):2573-2578.
    [21] Chu CW, Chen Q, Wang CH, Wang HM, Sun ZG, He Q, He J, Gu JG. Roseomonas chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from activated sludge. Antonie Van Leeuwenhoek, 2016, 109(5):611-618.
    [22] Chen Q, Yao L, Wang CH, Deng SK, Chu CW, He J. Isolation and characterization of acetochlor-degrading strain Sphingomonas sp. DC-6 and preliminary studies on its metabolic pathway. Journal of Agricultural Science and Technology, 2013, 15(5):67-74. (in Chinese) 陈青, 姚利, 王成红, 邓诗凯, 褚翠伟, 何健. 乙草胺降解菌Sphingomonas sp. DC-6的分离鉴定及其代谢途径的初步研究. 中国农业科技导报, 2013, 15(5):67-74.
    [23] Liu HM, Cao L, Lu P, Ni HY, Li YX, Yan X, Hong Q, Li SP. Biodegradation of butachlor by Rhodococcus sp. strain B1 and purification of its hydrolase (ChlH) responsible for N-dealkylation of chloroacetamide herbicides. Journal of Agricultural and Food Chemistry, 2012, 60(50):12238-12244.
    [24] Zhang J, Zheng JW, Liang B, Wang CH, Cai S, Ni YY, He J, Li SP. Biodegradation of chloroacetamide herbicides by Paracoccus sp. FLY-8in vitro. Journal of Agricultural and Food Chemistry, 2011, 59(9):4614-4621.
    [25] Wang F, Zhou J, Li ZK, Dong WL, Hou Y, Huang Y, Cui ZL. Involvement of the cytochrome P450 system EthBAD in the N-deethoxymethylation of acetochlor by Rhodococcus sp. strain T3-1. Applied and Environmental Microbiology, 2015, 81(6):2182-2188.
    [26] Cheng MG, Meng Q, Yang YJ, Chu CW, Chen Q, Li Y, Cheng D, Hong Q, Yan X, He J. The two-component monooxygenase MeaXY initiates the downstream pathway of chloroacetanilide herbicide catabolism in sphingomonads. Applied and Environmental Microbiology, 2017, 83(7):1-13. DOI:10.1128/aem.03241-16.
    [27] Chen Q, Wang CH, Deng SK, Wu YD, Li Y, Yao L, Jiang JD, Yan X, He J, Li SP. Novel three-component rieske non-heme iron oxygenase system catalyzing theN-dealkylation of chloroacetanilide herbicides in sphingomonads DC-6 and DC-2. Applied and Environmental Microbiology, 2014, 80(16):5078-5085.
    [28] Li Y, Chen Q, Wang CH, Cai S, He J, Huang X, Li SP. Degradation of acetochlor by consortium of two bacterial strains and cloning of a novel amidase gene involved in acetochlor-degrading pathway. Bioresource Technology, 2013, 148:628-631.
    [29] Loor-Vela SX, Crawford Simmons JJ, Simmons FW, Raskin L. Dissipation of[14C]acetochlor herbicide under anaerobic aquatic conditions in flooded soil microcosms. Journal of Agricultural and Food Chemistry, 2003, 51(23):6767-6773.
    [30] Janniche GS, Mouvet C, Albrechtsen HJ. Acetochlor sorption and degradation in limestone subsurface and aquifers. Pest Management Science, 2010, 66(12):1287-1297.
    [31] Konopka A. Anaerobic degradation of chloroacetanilide herbicides. Applied Microbiology and Biotechnology, 1994, 42(2/3):440-445.
    [32] Seybold CA, Mersie W, McNamee C. Anaerobic degradation of atrazine and metolachlor and metabolite formation in wetland soil and water microcosms. Journal of Environmental Quality, 2001, 30(4):1271-1277.
    [33] Ye YF, Min H, Du YF. Anaerobic degradation of butachlor by sulfate reducing bacteria enrichment culture. Acta Scientiae Circumstantiae, 2000, 20(3):376-378. (in Chinese) 叶央芳, 闵航, 杜宇峰. 一个硫酸盐还原细菌富集物对丁草胺的厌氧降解. 环境科学学报, 2000, 20(3):376-378.
    [34] Liu JW, Zhang X, Xu JY, Qiu JG, Zhu JC, Cao H, He J. Anaerobic biodegradation of acetochlor by acclimated sludge and its anaerobic catabolic pathway. Science of the Total Environment, 2020, 748:141122.
    [35] Chen Q, Wang HM, Li XH, Wei HF, Su P, He J, Jiang JD. Research progress in microbial degradation of chloroacetanilide herbicides. Chinese Journal of Applied and Environmental Biology, 2019, 25(5):1252-1260. (in Chinese) 陈青, 王红妹, 李晓红, 尉鸿飞, 苏朋, 何健, 蒋建东. 氯乙酰胺类除草剂微生物降解研究进展. 应用与环境生物学报, 2019, 25(5):1252-1260.
    [36] Chen SY, Dong XZ. Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(6):2257-2261.
    [37] Hahnke S, Langer T, Koeck DE, Klocke M. Description of Proteiniphilum saccharofermentans sp. nov., Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov., sp. nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(3):1466-1475.
    [38] Xun L. Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100. Journal of Bacteriology, 1996, 178(9):2645-2649.
    [39] Scholten JD, Chang KH, Babbitt PC, Charest H, Sylvestre M, Dunaway-Mariano D. Novel enzymic hydrolytic dehalogenation of a chlorinated aromatic. Science, 1991, 253(5016):182-185.
    [40] Holliger C, Wohlfarth G, Diekert G. Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiology Reviews, 1998, 22(5):383-398.
    [41] la Roche SD, Leisinger T. Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S-transferase supergene family. Journal of Bacteriology, 1990, 172(1):164-171.
    [42] Neumann A, Scholz-Muramatsu H, Diekert G. Tetrachloroethene metabolism of Dehalospirillum multivorans. Archives of Microbiology, 1994, 162(4):295-301.
    [43] Chen K, Huang LL, Xu CF, Liu XM, He J, Zinder SH, Li SP, Jiang JD. Molecular characterization of the enzymes involved in the degradation of a brominated aromatic herbicide. Molecular Microbiology, 2013, 89(6):1121-1139.
    引证文献
引用本文

刘军委,张璇,鲍艺萱,徐鉴昳,邱吉国,何健. 厌氧丁草胺降解菌BAD-20的分离鉴定及降解特性研究[J]. 微生物学报, 2021, 61(4): 1002-1015

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-16
  • 最后修改日期:2020-12-16
  • 在线发布日期: 2021-05-12
文章二维码