萘醌-氧吲哚生物碱coprisidins生物合成途径的研究
作者:
基金项目:

国家重点研发计划(2018YFA0901903);国家自然科学基金(21632007,31900043);上海交通大学“新进青年教师启动计划”


Identification and characterization of the biosynthetic pathway of naphthoquinone-oxindole alkaloid coprisidins
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 新颖结构的天然萘醌-氧吲哚类生物碱coprisidins(A和B)分离自昆虫肠道相关链霉菌,具有预防癌症的活性。作为首例具有萘醌-氧吲哚骨架的生物碱,对其独特生物合成机理的研究可为II型聚酮类化合物生物合成途径提供新的认知。[方法] 本研究对coprisidins的产生菌Streptomyces sp.SNU607进行全基因组测序,并根据测序结果的生物信息学分析初步定位coprisidins的生物合成基因簇;通过基因敲除以及异源表达手段确定coprisidins的生物合成基因簇;基于体内遗传学实验与生物信息学分析初步推导coprisidins的生物合成途径。[结果] Streptomyces sp.SNU607中有23个基因簇可能参与次级代谢,其中4个基因簇与聚酮合酶(PKS)相关;通过基因敲除与异源表达实验,本研究证实1个II型PKS负责coprisidins的生物合成;基于生物信息学分析,我们推测copH/I/M/O/N构成了1个基因盒,并负责起始单元丁酰CoA的合成;KSβ(CopB)的序列比对表明coprisidins的II型PKS系统更倾向于合成C20的初始聚酮链。[结论] Coprisidins的萘醌-吲哚结构是由II型PKSs催化形成,我们推测丁酰CoA是coprisidins聚酮骨架的起始单元,在最小PKS、聚酮酶、环化酶的催化下先形成类似蒽环的四环系统,随后在后修饰酶与氧化重排的作用下生成萘醌-氧吲哚骨架。本研究为进一步探究萘醌-氧吲哚类生物碱的生物合成机制奠定了基础,同时增加了II型PKSs合成产物的结构多样性。

    Abstract:

    [Objective] Coprisidins (A and B) are structural unique naphthoquinone-oxindole alkaloids from an insect gut-associated Streptomyces with bioactivities for cancer prevention. As the first example of natural alkaloids with naphthoquinone-oxindole skeleton, the biosynthesis of coprisidins remains unclear. Exploration of the coprisidins biosynthetic mechanism would gain new insights into the biosynthesis of type II polyketide natural products. [Methods] The genome of coprisidin-producing strain Streptomyces sp. SNU607 was sequenced and in silico analysis revealed the biosynthetic potential. The coprisidins biosynthetic cluster was cloned and identified by the gene inactivation and heterologous expression experiments. A biosynthetic pathway for coprisidins was proposed according to the in vivo results and bioinformatics analysis. [Results] Genome analysis of Streptomyces sp. SNU607 revealed 23 gene clusters potentially for secondary metabolites with four of them related to polyketide synthases (PKSs). Gene inactivation and heterologous expression confirmed that a type II PKS gene cluster, which contains 30 putative open reading frames, is responsible for coprisidins biosynthesis. The copH/I/M/N/O genes could constitute a five gene cassette for the biosynthesis of butyryl start unit of coprisidins. Sequence alignment of KSβ (CopB) suggested that coprisidins are biosynthesized by a type II system with a nascent chain length of C20, which is afterward modified by a variety of accessory enzymes. [Conclusion] The rare naphthoquinone-oxindole backbone of coprisidins is assembled by the minimal type II PKS (CopB-C-A) utilizing a butyryl starter unit, along with ketoreductases and cyclases to form the anthracycline-like four ring system. Subsequently, tailoring enzymes and oxidative arrangement are proposed to shape the final naphthoquinone-oxindole skeleton. Considering the structure feature of coprisidins, this study would set the stage for biosynthetic mechanism studies of naphthoquinone-oxindole alkaloids and expand the structural diversity of products synthesized by type II PKSs.

    参考文献
    [1] Shen B. A new golden age of natural products drug discovery. Cell, 2015, 163(6):1297-1300.
    [2] Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nature Chemistry, 2016, 8(6):531-541.
    [3] Beemelmanns C, Guo HJ, Rischer M, Poulsen M. Natural products from microbes associated with insects. Beilstein Journal of Organic Chemistry, 2016, 12:314-327.
    [4] Dossey AT. Insects and their chemical weaponry:new potential for drug discovery. Natural Product Reports, 2010, 27(12):1737-1757.
    [5] Douglas AE. Lessons from studying insect symbioses. Cell Host & Microbe, 2011, 10(4):359-367.
    [6] Kim KH, Ramadhar TR, Beemelmanns C, Cao SG, Poulsen M, Currie CR, Clardy J. Natalamycin A, an ansamycin from a termite-associated Streptomyces sp.. Chemical Science, 2014, 5(11):4333-4338.
    [7] Ziemert N, Alanjary M, Weber T. The evolution of genome mining in microbes-a review. Natural Product Reports, 2016, 33(8):988-1005.
    [8] Qiu HY, Wang PF, Lin HY, Tang CY, Zhu HL, Yang YH. Naphthoquinones:a continuing source for discovery of therapeutic antineoplastic agents. Chemical Biology & Drug Design, 2018, 91(3):681-690.
    [9] Aminin D, Polonik S. 1,4-Naphthoquinones:some biological properties and application. Chemical and Pharmaceutical Bulletin, 2020, 68(1):46-57.
    [10] Um S, Bach DH, Shin B, Ahn CH, Kim SH, Bang HS, Oh KB, Lee SK, Shin J, Oh DC. Naphthoquinone-oxindole alkaloids, coprisidins A and B, from a gut-associated bacterium in the dung beetle, Copris tripartitus. Organic Letters, 2016, 18(22):5792-5795.
    [11] Leoni A, Locatelli A, Morigi R, Rambaldi M. 2-Indolinone a versatile scaffold for treatment of cancer:a patent review (2008-2014). Expert Opinion on Therapeutic Patents, 2016, 26(2):149-173.
    [12] Yu JS, Zhou F, Liu YL, Zhou J. Organocatalytic asymmetric Michael addition of unprotected 3-substituted oxindoles to 1,4-naphthoquinone. Beilstein Journal of Organic Chemistry, 2012, 8:1360-1365.
    [13] Demydchuk Y, Sun YH, Hong H, Staunton J, Spencer JB, Leadlay PF. Analysis of the tetronomycin gene cluster:insights into the biosynthesis of a polyether tetronate antibiotic. ChemBioChem, 2008, 9(7):1136-1145.
    [14] Wilkinson CJ, Hughes-Thomas ZA, Martin CJ, Böhm I, Mironenko T, Deacon M, Wheatcroft M, Wirtz G, Staunton J, Leadlay PF. Increasing the efficiency of heterologous promoters in actinomycetes. Journal of Molecular Microbiology and Biotechnology, 2002, 4(4):417-426.
    [15] Kieser T, Bibb MJ, Chater KF, Butter MJ, Hopwood D. Practical streptomyces genetics:a laboratory manual. Norwich:John Innes Foundation, 2000.
    [16] Zou Y, Yin HX, Kong DK, Deng ZZ, Lin SJ. A trans-acting ketoreductase in biosynthesis of a symmetric polyketide dimer SIA7248. ChemBioChem, 2013, 14(6):679-683.
    [17] Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. The RAST Server:rapid annotations using subsystems technology. BMC Genomics, 2008, 9:75-90.
    [18] Ishikawa J, Hotta K. FramePlot:a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content. FEMS Microbiology Letters, 1999, 174(2):251-253.
    [19] Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. antiSMASH 5.0:updates to the secondary metabolite genome mining pipeline. Nucleic Acids Research, 2019, 47(W1):W81-W87.
    [20] Ansari MZ, Yadav G, Gokhale RS, Mohanty D. NRPS-PKS:a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Research, 2004, 32(Web Server issue):W405-W413.
    [21] Sambrook J, Fritsch EF, Maniatis T. Molecular cloning:a laboratory manual. 2nd ed. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory Press, 1989.
    [22] Dutta S, Whicher JR, Hansen DA, Hale WA, Chemler JA, Congdon GR, Narayan ARH, Håkansson K, Sherman DH, Smith JL, Skiniotis G. Structure of a modular polyketide synthase. Nature, 2014, 510(7506):512-517.
    [23] Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A. Type II polyketide synthases:gaining a deeper insight into enzymatic teamwork. Natural Product Reports, 2007, 24(1):162-190.
    [24] Low ZJ, Pang LM, Ding YC, Cheang QW, Le Mai Hoang K, Thi Tran H, Li JM, Liu XW, Kanagasundaram Y, Yang L, Liang ZX. Identification of a biosynthetic gene cluster for the polyene macrolactam sceliphrolactam in a Streptomyces strain isolated from mangrove sediment. Scientific Reports, 2018, 8:1594-1607.
    [25] Wang CM, Cane DE. Biochemistry and molecular genetics of the biosynthesis of the earthy odorant methylisoborneol in Streptomyces coelicolor. Journal of the American Chemical Society, 2008, 130(28):8908-8909.
    [26] Tang Y, Lee TS, Kobayashi S, Khosla C. Ketosynthases in the initiation and elongation modules of aromatic polyketide synthases have orthogonal acyl carrier protein specificity. Biochemistry, 2003, 42(21):6588-6595.
    [27] Moore BS, Hertweck C. Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Natural Product Reports, 2002, 19(1):70-99.
    [28] Okamura E, Tomita T, Sawa R, Nishiyama M, Kuzuyama T. Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25):11265-11270.
    [29] Tang Y, Tsai SC, Khosla C. Polyketide chain length control by chain length factor. Journal of the American Chemical Society, 2003, 125(42):12708-12709.
    [30] Keatinge-Clay AT, Maltby DA, Medzihradszky KF, Khosla C, Stroud RM. An antibiotic factory caught in action. Nature Structural & Molecular Biology, 2004, 11(9):888-893.
    [31] Pickens LB, Kim W, Wang P, Zhou H, Watanabe K, Gomi S, Tang Y. Biochemical analysis of the biosynthetic pathway of an anticancer tetracycline SF2575. Journal of the American Chemical Society, 2009, 131(48):17677-17689.
    [32] Ji ZY, Nie QY, Yin Y, Zhang M, Pan HX, Hou XF, Tang GL. Activation and characterization of cryptic gene cluster:two series of aromatic polyketides biosynthesized by divergent pathways. Angewandte Chemie International Edition, 2019, 58(50):18046-18054.
    [33] Olano C, Méndez C, Salas JA. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Natural Product Reports, 2010, 27(4):571-616.
    [34] Funa N, Ohnishi Y, Fujii I, Shibuya M, Ebizuka Y, Horinouchi S. A new pathway for polyketide synthesis in microorganisms. Nature, 1999, 400(6747):897-899.
    [35] Katsuyama Y, Sone K, Satou R, Izumikawa M, Takagi M, Fujie M, Satoh N, Shin-Ya K, Ohnishi Y. Involvement of the Baeyer-Villiger monooxygenase IfnQ in the biosynthesis of isofuranonaphthoquinone scaffold of JBIR-76 and -77. ChemBioChem, 2016, 17(11):1021-1028.
    [36] Poust S, Hagen A, Katz L, Keasling JD. Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform. Current Opinion in Biotechnology, 2014, 30:32-39
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林飞燕,段颖异,江晶洁,黄婷婷,林双君,邓子新. 萘醌-氧吲哚生物碱coprisidins生物合成途径的研究[J]. 微生物学报, 2021, 61(5): 1184-1199

复制
分享
文章指标
  • 点击次数:594
  • 下载次数: 1490
  • HTML阅读次数: 2954
  • 引用次数: 0
历史
  • 收稿日期:2020-05-12
  • 最后修改日期:2020-06-03
  • 在线发布日期: 2021-05-07
文章二维码