蜜蜂球囊菌菌丝和孢子中环状RNA的鉴定及比较分析
作者:
基金项目:

国家现代农业产业技术体系建设专项资金(CARS-44-KXJ7);福建农林大学硕士生导师团队项目(郭睿);福建农林大学科技创新专项(CXZX2017342,CXZX2017343);福建省病原真菌与真菌毒素重点实验室(福建农林大学)开放课题;福建农林大学优秀硕士学位论文资助基金(陈华枝)


Identification and comparison of circular RNAs in Ascosphaera apis mycelium and spore
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 本研究旨在明确蜜蜂球囊菌(Ascosphaera apis,简称球囊菌)菌丝和孢子中环状RNA(circular RNA,circRNA)的数量、种类和表达谱差异,并探讨共有circRNA、特有circRNA和差异表达circRNA(differentially expressed circRNA,DEcircRNA)在菌丝与孢子中的潜在作用。[方法] 基于前期获得的球囊菌菌丝(AaM)和孢子(AaS)的高质量RNA-seq数据,利用find_circ软件预测circRNA。通过Venn分析筛选AaM和AaS的共有circRNA和特有circRNA。根据P ≤ 0.05且|log2 fold change|≥ 1的标准筛选AaMvs.AaS比较组的DEcircRNA。通过比对GO和KEGG数据库对circRNA的来源基因进行功能和通路注释。利用TargetFinder软件预测circRNA靶向结合的miRNA及miRNA靶向结合的mRNA。采用Cytoscape软件对竞争性内源RNA(competing endogenous RNA,ceRNA)调控网络进行可视化。通过RT-qPCR对DEcircRNA进行验证。[结果] AaM和AaS中分别含有13210156和19011000条短序列读段(anchors reads),其中分别有6124922和11392886条能够比对上球囊菌参考基因组。在AaM和AaS中分别鉴定到1868个和2225个circRNA,二者共有的circRNA为1098个,AaM的特有circRNA为770个,AaS的特有circRNA为1127个。AaM和AaS的circRNA长度主要介于1000-2000 nt,基因间区circRNA为主要环化类型。AaMvs.AaS比较组包含456个上调circRNA和97个下调circRNA。共有circRNA的来源基因可注释到29个功能条目和14类通路;AaM的特有circRNA的来源基因可注释到31个功能和17类通路;AaS的特有circRNA的来源基因可注释到34个功能条目和16类通路;DEcircRNA的来源基因可注释到29个功能条目和40条通路。调控网络分析结果显示,36个共有circRNA靶向4个miRNA进而调控6个与内吞作用通路相关的靶mRNA;4(255)个AaM(AaS)的特有circRNA靶向2(2)个miRNA进而调控8(2)个次级代谢产物生物合成通路相关的靶mRNA;9个DEcircRNA靶向2个DEmiRNA进而调控3个MAPK信号通路相关的DEmRNA。RT-qPCR结果显示10个DEcircRNA的表达趋势与测序数据一致,证实了测序数据的可靠性。[结论] 球囊菌菌丝和孢子的共有circRNA、特有circRNA和DEcircRNA可能通过调控来源基因表达和充当ceRNA的方式调节球囊菌的物质和能量代谢、内吞作用、次级代谢产物生物合成和MAPK信号通路,进而影响球囊菌菌丝生长、孢子萌发和致病性。

    Abstract:

    [Objective] The objective of this study is to clarify the differences of number, type and expression profile of circRNAs between Ascosphaera apis mycelium and spore, and discuss the potential role of common circRNAs, specific circRNAs and differentially expressed circRNAs (DEcircRNAs). [Methods] Based on previously gained high-quality RNA-seq data of A. apis mycelium (AaM) and spore (AaS), circRNAs were predicted using find_circ software. Common circRNAs and specific circRNAs were filtered via Venn analysis. DEcircRNAs of AaM vs AaS were screened following the standard of P ≤ 0.05 and|log2 fold change|≥ 1. Function and pathway annotation of source genes of circRNAs was done via alignment against GO and KEGG databases. CircRNA-targeted miRNAs and miRNA-targeted mRNAs were predicted using TargetFinder software. Cytoscape software was used to visualize competing endogenous RNA (ceRNA) regulation network. DEcircRNAs were verified by RT-qPCR. [Results] There were 13210156 and 19011000 anchors reads in AaM and AaS, respectively, among them 6124922 and 11392886 ones can be mapped to the reference genome of A. apis. In AaM and AaS groups, 1868 and 2225 circRNA were respectively identified, and the numbers of common circRNAs, specific circRNAs in AaM and specific circRNAs in AaS were 1098, 770 and 1127, respectively. In addition, the length of circRNAs in AaM and AaS was mainly distributed among 1000-2000 nt, and the most abundant circularization type was intergenic circRNA. Further, 456 upregulated circRNAs and 97 downregulated circRNAs were contained in AaM vs AaS comparison group. Source genes of common circRNAs were annotated to 29 functional terms and 14 pathway classifications; source genes of specific circRNAs in AaM were annotated to 31 functional terms and 17 pathway classifications; source genes of specific circRNAs in AaS were annotated to 34 functional terms and 16 pathway classifications; source genes of DEcircRNAs were annotated to 29 functional terms and 40 pathways. ceRNA regulation network analysis showed that 36 common circRNAs can target four miRNAs, further regulating six mRNAs related to endocytosis. Additionally, four (255) specific circRNAs in AaM (AaS) can target two (two) miRNAs, further regulating eight (two) mRNAs related to biosynthesis of secondary metabolites; nine DEcircRNAs can target two DEmiRNAs, further regulating three DEmRNAs associated with MAPK signal pathway. The result of RT-qPCR displayed that the expression trend of 10 DEcircRNAs was consistent with that in the sequencing result, verifying the reliability of our sequencing data. [Conclusion] Common circRNAs, specific circRNAs and DEcircRNAs in A. apis mycelium and spore may regulate material and energy metabolisms, endocytosis, biosynthesis of secondary metabolites, and MAPK signaling pathway through controlling the expression of source genes and serving as ceRNAs, further affecting the mycelium growth, spore germination, and pathogenicity of A. apis.

    参考文献
    [1] Calderón RA, Rivera G, Sánchez A, Zamora LG. Chalkbrood (Ascosphaera apis) and some other fungi associated with Africanized honey bees (Apis mellifera) in Costa Rica. Journal of Apicultural Research, 2004, 43(4):187-188.
    [2] Aronstein KA, Murray KD. Chalkbrood disease in honey bees. Journal of Invertebrate Pathology, 2010, 103 Suppl 1:S20-S29.
    [3] Qin X, Evans JD, Aronstein KA, Murray KD, Weinstock GM. Genome sequences of the honey bee pathogens Paenibacillus larvae and Ascosphaera apis. Insect Molecular Biology, 2006, 15(5):715-718.
    [4] Shang YF, Xiao GH, Zheng P, Cen K, Zhan S, Wang CS. Divergent and convergent evolution of fungal pathogenicity. Genome Biology and Evolution, 2016, 8(5):1374-1387.
    [5] Zhang ZN, Xiong CL, Xu XJ, Huang ZJ, Zheng YZ, Luo Q, Liu M, Li WD, Tong XY, Zhang Q, Liang Q, Guo R, Chen DF. De novo assembly of a reference transcriptome and development of SSR markers for Ascosphaera apis. Acta Entomologica Sinica, 2017, 60(1):34-44. (in Chinese) 张曌楠, 熊翠玲, 徐细建, 黄枳腱, 郑燕珍, 骆群, 刘敏, 李汶东, 童新宇, 张琦, 梁勤, 郭睿, 陈大福. 蜜蜂球囊菌的参考转录组de novo组装及SSR分子标记开发. 昆虫学报, 2017, 60(1):34-44.
    [6] Guo R, Chen HZ, Tong XY, Xiong CL, Zheng YZ, Fu ZM, Xie YL, Wang HP, Zhao HX, Chen DF. Structural optimization of annotated genes and identification of novel genes in Ascosphaera apis. Journal of China Agricultural University, 2019, 24(1):61-68. (in Chinese) 郭睿, 陈华枝, 童新宇, 熊翠玲, 郑燕珍, 付中民, 解彦玲, 王海朋, 赵红霞, 陈大福. 蜜蜂球囊菌基因结构优化及新基因鉴定. 中国农业大学学报, 2019, 24(1):61-68.
    [7] Jiang HB, Du Y, Fan XX, Wang J, Zhu ZW, Fan YC, Xiong CL, Fu ZM, Xu GJ, Chen DF, Guo R. Comparative transcriptome analysis of Ascosphaera apis mycelium and spore. Journal of Sichuan University (Natural Science Edition), 2020, 57(6):1178-1185. (in Chinese) 蒋海宾, 杜宇, 范小雪, 王杰, 祝智威, 范元婵, 熊翠玲, 付中民, 徐国钧, 陈大福, 郭睿. 蜜蜂球囊菌菌丝和孢子的比较转录组分析. 四川大学学报(自然科学版), 2020, 57(6):1178-1185.
    [8] Chen HZ, Zhu ZW, Jiang HB, Wang J, Fan YC, Fan XX, Wan JQ, Lu JX, Xiong CL, Zheng YZ, Fu ZM, Chen DF, Guo R. Comparative analysis of microRNAs and corresponding target mRNAs in Ascosphaera apis mycelium and spore. Scientia Agricultura Sinica, 2020, 53(17):3606-3619. (in Chinese) 陈华枝, 祝智威, 蒋海宾, 王杰, 范元婵, 范小雪, 万洁琦, 卢家轩, 熊翠玲, 郑燕珍, 付中民, 陈大福, 郭睿. 蜜蜂球囊菌菌丝和孢子中微小RNA及其靶mRNA的比较分析. 中国农业科学, 2020, 53(17):3606-3619.
    [9] Qu SB, Zhong Y, Shang RZ, Zhang X, Song WJ, Kjems J, Li HM. The emerging landscape of circular RNA in life processes. RNA Biology, 2017, 14(8):992-999.
    [10] Perkel JM. Assume nothing:the tale of circular RNA. Biotechniques, 2013, 55(2):55-57.
    [11] Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu JZ, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2):141-157.
    [12] Chen X, Shi W, Chen C. Differential circular RNAs expression in ovary during oviposition in honey bees. Genomics, 2019, 111(4):598-606.
    [13] Liu JW, Chen LL. Analysis of circular RNA in Caenorhabditis elegans. Hans Journal of Computational Biology, 2015, 5(2):17-28.
    [14] Danan M, Schwartz S, Edelheit S, Sorek R. Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Research, 2012, 40(7):3131-3142.
    [15] He J, Xie QC, Xu HL, Li JT, Li YS. Circular RNAs and cancer. Cancer Letters, 2017, 396:138-144.
    [16] Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nature Reviews Molecular Cell Biology, 2020, 21(8):475-490.
    [17] Yang Y, Fan XJ, Mao MW, Song XW, Wu P, Zhang Y, Jin YF, Yang Y, Chen LL, Wang Y, Wong CC, Xiao XS, Wang ZF. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Research, 2017, 27(5):626-641.
    [18] Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, Shenzis S, Samson M, Dittmar G, Landthaler M, Chekulaeva M, Rajewsky N, Kadener S. Translation of circRNAs. Molecular Cell, 2017, 66(1):9-21.
    [19] Qu SB, Yang XS, Li XL, Wang JL, Gao Y, Shang RZ, Sun W, Dou KF, Li HM. Circular RNA:a new star of noncoding RNAs. Cancer Letters, 2015, 365(2):141-148.
    [20] Yang J, Li Y, Yu ZC, Zhou YF, Tu JF, Lou J, Wang YH. Circular RNA circ100084 functions as sponge of miR-23a-5p to regulate IGF2 expression in hepatocellular carcinoma. Molecular Medicine Reports, 2020, 21(6):2395-2404.
    [21] Chen DF, Guo R, Xu XJ, Xiong CL, Liang Q, Zheng YZ, Luo Q, Zhang ZN, Huang ZJ, Kumar D, Xi WJ, Zou X, Liu M. Uncovering the immune responses of Apis mellifera ligustica larval gut to Ascosphaera apis infection utilizing transcriptome sequencing. Gene, 2017, 621:40-50.
    [22] Xiong CL, Chen HZ, Chen DF, Zheng YZ, Fu ZM, Xu GJ, Du Y, Wang HP, Geng SH, Zhou DD, Liu SY, Guo R. Analysis of circular RNAs and their regulatory networks in the midgut of Apis mellifera ligustica workers. Acta Entomologica Sinica, 2018, 61(12):1363-1375. (in Chinese) 熊翠玲, 陈华枝, 陈大福, 郑燕珍, 付中民, 徐国钧, 杜宇, 王海朋, 耿四海, 周丁丁, 刘思亚, 郭睿. 意大利蜜蜂工蜂中肠的环状RNA及其调控网络分析. 昆虫学报, 2018, 61(12):1363-1375.
    [23] Guo R, Chen HZ, Xiong CL, Zheng YZ, Fu ZM, Xu GJ, Du Y, Wang HP, Geng SH, Zhou DD, Liu SY, Chen DF. Analysis of differentially expressed circular RNAs and their regulation networks during the developmental process of Apis mellifera ligustica worker's midgut. Scientia Agricultura Sinica, 2018, 51(23):4575-4590. (in Chinese) 郭睿, 陈华枝, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 杜宇, 王海朋, 耿四海, 周丁丁, 刘思亚, 陈大福. 意大利蜜蜂工蜂中肠发育过程中的差异表达环状RNA及其调控网络分析. 中国农业科学, 2018, 51(23):4575-4590.
    [24] Chen DF, Chen HZ, Du Y, Zhu ZW, Wang J, Geng SH, Xiong CL, Zheng YZ, Hou CS, Diao QY, Guo R. Systematic identification of circular RNAs and corresponding regulatory networks unveil their potential roles in the midguts of eastern honeybee workers. Applied Microbiology and Biotechnology, 2020, 104(1):257-276.
    [25] Guo R, Chen DF, Chen HZ, Fu ZM, Xiong CL, Hou CS, Zheng YZ, Guo YL, Wang HP, Du Y, Diao QY. Systematic investigation of circular RNAs in Ascosphaera apis, a fungal pathogen of honeybee larvae. Gene, 2018, 678:17-22.
    [26] Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, Le Noble F, Rajewsky N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441):333-338.
    [27] Robinson MD, McCarthy DJ, Smyth GK. edgeR:a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1):139-140.
    [28] Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu SS, Yang L, Chen LL. Circular intronic long noncoding RNAs. Molecular Cell, 2013, 51(6):792-806.
    [29] Li ZY, Huang C, Bao C, Chen L, Lin M, Wang XL, Zhong GL, Yu B, Hu WC, Dai LM, Zhu PF, Chang ZX, Wu QF, Zhao Y, Jia Y, Xu P, Liu HJ, Shan G. Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 2015, 22(3):256-264.
    [30] Langdon WB. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Mining, 2015, 8(1):1.
    [31] Allen E, Xie ZX, Gustafson AM, Carrington JC. microRNA-directed phasing during Trans-acting siRNA biogenesis in plants. Cell, 2005, 121(2):207-221.
    [32] Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8:new features for data integration and network visualization. Bioinformatics, 2011, 27(3):431-432.
    [33] Hu XL, Zhu M, Zhang X, Liu B, Liang Z, Huang LX, Xu J, Yu L, Li K, Zar MS, Xue RY, Cao GL, Gong CL. Identification and characterization of circular RNAs in the silkworm midgut following Bombyx mori cytoplasmic polyhedrosis virus infection. RNA Biology, 2018, 15(2):292-301.
    [34] Guo R, Chen DF, Chen HZ, Xiong CL, Zheng YZ, Hou CS, Du Y, Geng SH, Wang HP, Zhou DD, Guo YL. Genome-wide identification of circular RNAs in fungal parasite Nosema ceranae. Current Microbiology, 2018, 75(12):1655-1660.
    [35] Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annual Review of Biochemistry, 2009, 78:857-902.
    [36] Wang JM. Characterization of two endocytosis MoARK1 and MoPAN1 in development and pathogenicity of Magnaporthe oryza. Master Dissertation of Nanjing Agricultural University, 2012. (in Chinese) 王佳妹. 细胞内吞作用基因MoARKl和MoPANl在稻瘟病菌生长发育及致病过程中的功能研究. 南京农业大学硕士学位论文, 2012.
    [37] Huang JM, Zhang PZ, Wang F, Li Y, Feng SJ, Yang M. Advanced studies on metabolites and pharmacological of Beauveria bassiana. Chinese Journal of Biochemical Pharmaceutics, 2014, 34(9):167-173. (in Chinese) 黄居敏, 张普照, 王芳, 李旸, 冯少俊, 杨明. 白僵菌的代谢产物及药理活性研究进展. 中国生化药物杂志, 2014, 34(9):167-173.
    [38] Calvo AM, Wilson RA, Bok JW, Keller NP. Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Reviews, 2002, 66(3):447-459.
    [39] Wolf JC, Mirocha CJ. Regulation of sexual reproduction in Gibberella zeae (Fusarium roseum ‘Graminearum’) by F-2(Zearalenone). Canadian Journal of Microbiology, 1973, 19(6):725-734.
    [40] Zhao XH, Mehrabi R, Xu JR. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryotic Cell, 2007, 6(10):1701-1714.
    [41] Igbaria A, Lev S, Rose MS, Lee BN, Hadar R, Degani O, Horwitz BA. Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses. Molecular Plant-Microbe Interactions, 2008, 21(6):769-780.
    [42] Chen XX, Xu C, Qian Y, Liu R, Zhang QQ, Zeng GH, Zhang X, Zhao H, Fang WG. MAPK cascade-mediated regulation of pathogenicity, conidiation and tolerance to abiotic stresses in the entomopathogenic fungus Metarhizium robertsii. Environmental Microbiology, 2016, 18(3):1048-1062.
    [43] Jiang C, Zhang X, Liu HQ, Xu JR. Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLoS Pathogens, 2018, 14(3):e1006875.
    [44] Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis:the Rosetta stone of a hidden RNA language? Cell, 2011, 146(3):353-358.
    [45] Deng YY, Zhang WP, She JQ, Zhang LS, Chen T, Zhou J, Yuan ZY. GW27-e1167 circular RNA related to PPARγ function as ceRNA of microRNA in human acute myocardial infarction. Journal of the American College of Cardiology, 2016, 68(16S):C51-C52.
    [46] Pan RY, Liu P, Zhou HT, Sun WX, Song J, Shu J, Cui GJ, Yang ZJ, Jia EZ. Circular RNAs promote TRPM3 expression by inhibiting hsa-miR-130a-3p in coronary artery disease patients. Oncotarget, 2017, 8(36):60280-60290.
    [47] Zhang XW, Zhong B, Zhang WJ, Wu J, Wang Y. Circular RNA CircMTO1 inhibits proliferation of glioblastoma cells via miR-92/WWOX signaling pathway. Medical Science Monitor:International Medical Journal of Experimental and Clinical Research, 2019, 25:6454-6461.
    [48] Fang WG, Pei Y, Bidochka MJ. Transformation of Metarhizium anisopliae mediated by Agrobacterium tumefaciens. Canadian Journal of Microbiology, 2006, 52(7):623-626.
    [49] Leclerque A, Wan H, Abschütz A, Chen SW, Mitina GV, Zimmermann G, Schairer HU. Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana. Current Genetics, 2004, 45(2):111-119.
    [50] Zhang YJ, Zhao JJ, Xie M, Peng DL. Agrobacterium tumefaciens-mediated transformation in the entomopathogenic fungus Lecanicillium lecanii and development of benzimidazole fungicide resistant strains. Journal of Microbiological Methods, 2014, 105:168-173.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈华枝,蒋海宾,祝智威,范元婵,许雅静,孙明会,刘佳美,熊翠玲,郑燕珍,付中民,徐国钧,陈大福,郭睿. 蜜蜂球囊菌菌丝和孢子中环状RNA的鉴定及比较分析[J]. 微生物学报, 2021, 61(5): 1299-1314

复制
分享
文章指标
  • 点击次数:351
  • 下载次数: 1020
  • HTML阅读次数: 1323
  • 引用次数: 0
历史
  • 收稿日期:2020-06-19
  • 最后修改日期:2020-09-02
  • 在线发布日期: 2021-05-07
文章二维码