中华蜜蜂6日龄幼虫响应蜜蜂球囊菌侵染的长链非编码RNA应答研究
作者:
基金项目:

国家自然科学基金(31702190);国家现代农业产业技术体系建设专项资金(CARS-44-KXJ7);福建省教育厅中青年教师教育科研项目(JAT170158);福建农林大学科技创新专项基金(CXZX2017342,CXZX2017343);福建农林大学硕士生导师团队项目(郭睿);福建省病原真菌与真菌毒素重点实验室开放课题;福建农林大学优秀硕士学位论文资助基金(杜宇)


Long non-coding RNA response of 6-day-old Apis cerana cerana larvae to Ascosphaera apis infection
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 本研究旨在探究长链非编码RNA(long non-coding RNA,lncRNA)在中华蜜蜂(Apis cerana cerana,简称中蜂)6日龄幼虫应答蜜蜂球囊菌(Ascosphaera apis,简称球囊菌)侵染过程中的差异表达谱及调控作用。[方法] 利用链特异性cDNA建库的RNA-seq技术对未被侵染及球囊菌侵染的中蜂6日龄幼虫肠道(AcCK和AcT)进行深度测序。通过相关生物信息学软件分析lncRNA的结构特征和表达谱。筛选并分析差异表达lncRNA(differentially expressed lncRNA,DElncRNA)的顺式(cis)作用及竞争性内源RNA(competing endogenous RNA,ceRNA)调控网络。采用RT-qPCR验证测序数据及DElncRNA差异变化趋势的可靠性。[结果] AcCK和AcT共预测出642个已知lncRNA和487个新lncRNA。与蛋白编码基因相比,上述中蜂lncRNA外显子数更少、长度更短且表达量更低。43个antisense lncRNA与40个正义链mRNA之间互补配对。AcCK和AcT比较组包含367个上调lncRNA和268个下调lncRNA。有194个DElncRNA潜在调控461个上下游基因,并涉及细胞进程、代谢进程和催化活性等38个功能条目以及氨基酸代谢、内吞作用和MAPK等191条通路。此外,有180个DElncRNA可靶向结合50个DEmiRNA,进而调控6365个mRNA;三者之间形成较为复杂的ceRNA调控网络。[结论] 中蜂6日龄幼虫肠道的部分lncRNA可作为antisense lncRNA参与应答球囊菌侵染;部分DElncRNA可通过cis作用调节物质代谢和免疫途径相关的上下游基因,从而介导宿主的侵染应答;TCONS_00010661和TCONS_00003104等DElncRNA可通过ceRNA网络调控Jak-STAT和氧化磷酸化等通路及富集基因,进而参与宿主的侵染应答。

    Abstract:

    [Objective] This study aims to investigate the differential expression pattern of long non-coding RNAs (lncRNAs) and their regulatory function involved in Apis cerana cerana 6-day-old larval gut response to Ascosphaera apis infection. [Methods] Un-infected and Ascosphaera apis-infected 6-day-old larval guts of Apis cerana cerana (AcCK and AcT) were sequenced using strand-specific cDNA library-based RNA-seq technology. Structural characteristics and expression pattern of lncRNAs were analyzed using related bioinformatic softwares. DElncRNAs were screened followed by investigation of their cis-acting role and competitive endogenous RNA (ceRNA) network. RT-qPCR was conducted to verify the sequencing data and expression pattern of DElncRNAs. [Results] Here, 642 known lncRNAs and 487 novel lncRNAs were identified. Compared with mRNAs, these Apis cerana cerana lncRNAs were shorter in exon and intron length, fewer in exon number and lower in expression level. Additionally, 43 antisense lncRNAs were discovered to have complementary relationship with 40 sense-strand mRNAs. In AcCK vs. AcT comparison group, 367 up-regulated lncRNAs and 268 down-regulated ones were identified. In total, 194 DElncRNAs were found to potentially regulate 461 upstream and downstream genes, which were annotated to 38 functional terms such as cellular process, metabolic process and catalytic activity, as well as 191 pathways including amino acid metabolism, endocytosis and MAPK signaling pathways. Moreover, 180 DElncRNAs can target 50 DEmiRNAs, further regulating 6365 mRNAs; additionally, complex regulatory networks existed among them. [Conclusion] These results demonstrated that partial antisense lncRNAs may participate in host response to Ascosphaera apis infection; some DElncRNAs may regulate upstream and downstream genes relative to material metabolism and immune-associated pathways, thus mediating host Ascosphaera apis-response; a portion of DElncRNAs including TCONS_00010661 and TCONS_00003104 were likely to regulate Jak-STAT signaling pathway and oxidative phosphorylation and corresponding enriched genes via ceRNA networks, further participating in the response of host to Ascosphaera apis invasion.

    参考文献
    [1] Lin ZG, Page P, Li L, Qin Y, Zhang YY, Hu FL, Neumann P, Zheng HQ, Dietemann V. Go east for better honey bee health:Apis cerana is faster at hygienic behavior than A. mellifera. PLoS One, 2016, 11(9):e0162647.
    [2] Chen DF, Guo R, Xiong CL, Zheng YZ, Hou CS, Fu ZM. Morphological and molecular identification of chalkbrood disease pathogen Ascosphaera apis in Apis cerana cerana. Journal of Apicultural Research, 2018, 57(4):516-521.
    [3] Maxfield-Taylor SA, Mujic AB, Rao S. First detection of the larval chalkbrood disease pathogen Ascosphaera apis (Ascomycota:Eurotiomycetes:Ascosphaerales) in adult Bumble bees. PLoS One, 2015, 10(4):e0124868.
    [4] Chen DF, Guo R, Xu XJ, Xiong CL, Liang Q, Zheng YZ, Luo Q, Zhang ZN, Huang ZJ, Kumar D, Xi WJ, Zou X, Liu M. Uncovering the immune responses of Apis mellifera ligustica larval gut to Ascosphaera apis infection utilizing transcriptome sequencing. Gene, 2017, 621:40-50.
    [5] Guo R, Chen DF, Diao QY, Xiong CL, Zheng YZ, Hou CS. Transcriptomic investigation of immune responses of the Apis cerana cerana larval gut infected by Ascosphaera apis. Journal of Invertebrate Pathology, 2019, 166:107210.
    [6] Xiong CL, Du Y, Wang HQ, Zheng YZ, Fu ZM, Wang HP, Zhang L, Chen DF, Guo R. Unraveling the mechanism regulating the Ascosphaera apis-resistance difference between Apis cerana cerana and Apis mellifera ligustica larvae based on comparative transcriptome analysis. Journal of China Agricultural University, 2019, 24(5):106-114. (in Chinese) 熊翠玲, 杜宇, 王鸿权, 郑燕珍, 付中民, 王海朋, 张璐, 陈大福, 郭睿. 基于比较转录组学分析揭示中华蜜蜂及意大利蜜蜂幼虫的球囊菌抗性差异机制. 中国农业大学学报, 2019, 24(5):106-114.
    [7] Aronstein KA, Murray KD. Chalkbrood disease in honey bees. Journal of Invertebrate Pathology, 2010, 103 Suppl 1:S20-S29.
    [8] Fatica A, Bozzoni I. Long non-coding RNAs:new players in cell differentiation and development. Nature Reviews Genetics, 2014, 15(1):7-21.
    [9] Wang TM, Qu LN, Li YH. Structures and functions of long non-coding RNAs and its roles in diseases. Chinese Journal of Biochemistry and Molecular Biology, 2015, 31(7):659-666. (in Chinese) 王婷梅, 曲丽娜, 李莹辉. LncRNA的结构、功能及其与疾病的关系. 中国生物化学与分子生物学报, 2015, 31(7):659-666.
    [10] Atianand MK, Fitzgerald KA. Long non-coding RNAs and control of gene expression in the immune system. Trends in Molecular Medicine, 2014, 20(11):623-631.
    [11] Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell, 2018, 172(3):393-407.
    [12] Feng KY, Liu J, Wei P, Ou SY, Wen X, Shen GM, Xu ZF, Xu Q, He L. lincRNA_Tc13743.2-miR-133-5p-TcGSTm02 regulation pathway mediates cyflumetofen resistance in Tetranychus cinnabarinus. Insect Biochemistry and Molecular Biology, 2020, 123:103413.
    [13] Jayakodi M, Jung JW, Park D, Ahn YJ, Lee SC, Shin SY, Shin C, Yang TJ, Kwon HW. Genome-wide characterization of long intergenic non-coding RNAs (lincRNAs) provides new insight into viral diseases in honey bees Apis cerana and Apis mellifera. BMC Genomics, 2015, 16(1):680.
    [14] Chen X, Ma C, Chen C, Lu Q, Shi W, Liu ZG, Wang HH, Guo HK. Integration of lncRNA-miRNA-mRNA reveals novel insights into oviposition regulation in honey bees. PeerJ, 2017, 5:e3881.
    [15] Valanne S, Salminen TS, Järvelä-Stölting M, Vesala L, Rämet M. Immune-inducible non-coding RNA molecule lincRNA-IBIN connects immunity and metabolism in Drosophila melanogaster. PLoS Pathogens, 2019, 15(1):e1007504.
    [16] Zhang SL, Yin HT, Shen MM, Huang HL, Hou QR, Zhang ZD, Zhao WG, Guo XJ, Wu P. Analysis of lncRNA-mediated gene regulatory network of Bombyx mori in response to BmNPV infection. Journal of Invertebrate Pathology, 2020, 170:107323.
    [17] Xiao HM, Yuan ZT, Guo DH, Hou BF, Yin CL, Zhang WQ, Li F. Genome-wide identification of long noncoding RNA genes and their potential association with fecundity and virulence in rice brown planthopper, Nilaparvata lugens. BMC Genomics, 2015, 16(1):749.
    [18] Etebari K, Asad S, Zhang GM, Asgari S. Identification of Aedes aegypti long intergenic non-coding RNAs and their association with Wolbachia and Dengue virus infection. PLoS Neglected Tropical Diseases, 2016, 10(10):e0005069.
    [19] Guo Y, Su SK, Chen SL, Zhang SW, Chen RS. The function of lncRNAs in the caste determination of the honeybee. Progress in Biochemistry and Biophysics, 2015, 42(8):750-757. (in Chinese) 郭昱, 苏松坤, 陈盛禄, 张少吾, 陈润生. LncRNA在蜜蜂级型分化中的功能研究. 生物化学与生物物理进展, 2015, 42(8):750-757.
    [20] Liu F, Shi TF, Qi L, Su X, Wang DQ, Dong J, Huang ZY. LncRNA profile of Apis mellifera and its possible role in behavioural transition from nurses to foragers. BMC Genomics, 2019, 20(1):393.
    [21] Chen DF, Chen HZ, Du Y, Zhou DD, Geng SH, Wang HP, Wan JQ, Xiong CL, Zheng YZ, Guo R. Genome-wide identification of long non-coding RNAs and their regulatory networks involved in Apis mellifera ligustica response to Nosema ceranae infection. Insects, 2019, 10(8):245.
    [22] Guo R, Zhang L, Xu XJ, Shi XL, Xiong CL, Zheng YZ, Fu ZM, Huang ZJ, Wang HQ, Hou ZX, Chen DF. Analysis of the differentially expressed genes in the 6-day-old larval gut of Apis cerana cerana under the stress of Ascosphaera apis. Journal of Environmental Entomology, 2017, 39(3):539-547. (in Chinese) 郭睿, 张璐, 徐细建, 史秀丽, 熊翠玲, 郑燕珍, 付中民, 黄枳腱, 王鸿权, 侯志贤, 陈大福. 中华蜜蜂6日龄幼虫肠道响应球囊菌胁迫的差异表达基因分析. 环境昆虫学报, 2017, 39(3):539-547.
    [23] Du Y, Tong XY, Zhou DD, Chen DF, Xiong CL, Zheng YZ, Xu GJ, Wang HP, Chen HZ, Guo YL, Long Q, Guo R. MicroRNA responses in the larval gut of Apis cerana cerana to Ascosphaera apis stress. Acta Microbiologica Sinica, 2019, 59(9):1747-1764. (in Chinese) 杜宇, 童新宇, 周丁丁, 陈大福, 熊翠玲, 郑燕珍, 徐国钧, 王海朋, 陈华枝, 郭意龙, 隆琦, 郭睿. 中华蜜蜂幼虫肠道响应球囊菌胁迫的microRNA应答分析. 微生物学报, 2019, 59(9):1747-1764.
    [24] Chen HZ, Fu ZM, Wang J, Zhu ZW, Fan XX, Jiang HB, Fan YC, Zhou DD, Li WD, Xiong CL, Zheng YZ, Xu GJ, Chen DF, Guo R. Circular RNA response of Apis cerana cerana 6-day-old larvae to Ascosphaera apis stress. Acta Microbiologica Sinica, 2020, 60(10):2292-2310. (in Chinese) 陈华枝, 付中民, 王杰, 祝智威, 范小雪, 蒋海宾, 范元婵, 周丁丁, 李汶东, 熊翠玲, 郑燕珍, 徐国钧, 陈大福, 郭睿. 中华蜜蜂6日龄幼虫响应蜜蜂球囊菌胁迫的环状RNA应答. 微生物学报, 2020, 60(10):2292-2310.
    [25] Xiong CL, Du Y, Feng RR, Jiang HB, Shi XY, Wang HP, Fan XX, Wang J, Zhu ZW, Fan YC, Chen HZ, Zhou DD, Zheng YZ, Chen DF, GuoR. Differential expression pattern and regulation network of microRNAs in Ascosphaera apis invading Apis cerana cerana 6-day-old larvae. Acta Microbiologica Sinica, 2020, 60(5):992-1009. (in Chinese) 熊翠玲, 杜宇, 冯睿蓉, 蒋海宾, 史小玉, 王海朋, 范小雪, 王杰, 祝智威, 范元婵, 陈华枝, 周丁丁, 郑燕珍, 陈大福, 郭睿. 侵染中华蜜蜂6日龄幼虫的蜜蜂球囊菌的微小RNA差异表达谱及调控网络. 微生物学报, 2020, 60(5):992-1009.
    [26] Guo R, Du Y, Zhou NH, Liu SY, Xiong CL, Zheng YZ, Fu ZM, Xu GJ, Wang HP, Geng SH, Zhou DD, Chen DF. Comprehensive analysis of differentially expressed microRNAs and their target genes in the larval gut of Apis mellifera ligustica during the late stage of Ascosphaera apis stress. Acta Entomologica Sinica, 2019, 62(1):49-60. (in Chinese) 郭睿, 杜宇, 周倪红, 刘思亚, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 王海朋, 耿四海, 周丁丁, 陈大福. 意大利蜜蜂幼虫肠道在球囊菌胁迫后期的差异表达微小RNA及其靶基因分析. 昆虫学报, 2019, 62(1):49-60.
    [27] Guo R, Geng SH, Xiong CL, Zheng YZ, Fu ZM, Wang HP, Du Y, Tong XY, Zhao HX, Chen DF. Differential expression analysis of long non-coding RNAs during the developmental process of Apis mellifera ligustica worker's midgut. Scientia Agricultura Sinica, 2018, 51(18):3600-3613. (in Chinese) 郭睿, 耿四海, 熊翠玲, 郑燕珍, 付中民, 王海朋, 杜宇, 童新宇, 赵红霞, 陈大福. 意大利蜜蜂工蜂中肠发育过程中长链非编码RNA的差异表达分析. 中国农业科学, 2018, 51(18):3600-3613.
    [28] Xiong CL, Geng SH, Wang XR, Liu SY, Chen DF, Zheng YZ, Fu ZM, Du Y, Wang HP, Chen HZ, Zhou DD, Guo R. Prediction, analysis and identification of long non-coding RNA in the midguts of Apis mellifera ligustica workers. Chinese Journal of Applied Entomology, 2018, 55(6):1034-1044. (in Chinese) 熊翠玲, 耿四海, 王心蕊, 刘思亚, 陈大福, 郑燕珍, 付中民, 杜宇, 王海朋, 陈华枝, 周丁丁, 郭睿. 意大利蜜蜂工蜂中肠的长链非编码RNA的预测、分析及鉴定. 应用昆虫学报, 2018, 55(6):1034-1044.
    [29] Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C, Forrest A R R, Carninci P, Biffo S, Stupka E, Gustincich S. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature, 2012, 491(7424):454-457.
    [30] Rinn JL, Chang HY. Genome regulation by long non-coding RNAs. Annual Review of Biochemistry, 2012, 81:145-166.
    [31] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods, 2001, 25(4):402-408.
    [32] Shang YF, Xiao GH, Zheng P, Cen K, Zhan S, Wang CS. Divergent and convergent evolution of fungal pathogenicity. Genome Biology and Evolution, 2016, 8(5):1374-1387.
    [33] Park D, Jung JW, Choi BS, Jayakodi M, Lee J, Lim J, Yu Y, Choi YS, Lee ML, Park Y, Choi IY, Yang TJ, Edwards O R, Nah G, Kwon HW. Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genomics, 2015, 16(1):1.
    [34] Zhu B, Xu MY, Shi HY, Gao XW, Liang P. Genome-wide identification of lncRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.). BMC Genomics, 2017, 18(1):380.
    [35] Guo R, Chen DF, Xiong CL, Hou CS, Zheng YZ, Fu ZM, Diao QY, Zhang L, Wang HQ, Hou ZX, Li WD, Kumar D, Liang Q. Identification of long non-coding RNAs in the chalkbrood disease pathogen Ascospheara apis. Journal of Invertebrate Pathology, 2018, 156:1-5.
    [36] Guo R, Chen DF, Xiong CL, Hou CS, Zheng YZ, Fu ZM, Liang Q, Diao QY, Zhang L, Wang HQ, Hou ZX, Kumar D. First identification of long non-coding RNAs in fungal parasite Nosema ceranae. Apidologie, 2018, 49(5):660-670.
    [37] Amit-Avraham I, Pozner G, Eshar S, Fastman Y, Kolevzon N, Yavin E, Dzikowski R. Antisense long non-coding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(9):E982-E991.
    [38] Albertová V, Su SK, Brockmann A, Gadau J, Albert S. Organization and potential function of the mrjp3 locus in four honeybee species. Journal of Agricultural and Food Chemistry, 2005, 53(20):8075-8081.
    [39] Peixoto LG, Calábria LK, Garcia L, Capparelli FE, Goulart LR, de Sousa MV, Espindola FS. Identification of major royal jelly proteins in the brain of the honeybee Apis mellifera. Journal of Insect Physiology, 2009, 55(8):671-677.
    [40] Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, Jiang H, Kanost M, Thompson GJ, Zou Z, Hultmark D. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology, 2006, 15(5):645-656.
    [41] Guo ZJ, Kang S, Sun D, Gong LJ, Zhou JL, Qin JY, Guo L, Zhu LH, Bai Y, Ye F, Wu QJ, Wang SL, Crickmore N, Zhou XG, Zhang YJ. MAPK-dependent hormonal signaling plasticity contributes to overcoming Bacillus thuringiensis toxin action in an insect host. Nature Communications, 2020, 11(1):3003.
    [42] Cheng EC, Lin HF. Repressing the repressor:a lincRNA as a microRNA sponge in embryonic stem cell self-renewal. Developmental Cell, 2013, 25(1):1-2.
    [43] Xie CR, Wang F, Zhang S, Wang FQ, Zheng S, Li Z, Lv J, Qi HQ, Fang QL, Wang XM, Yin ZY. Long non-coding RNA HCAL facilitates the growth and metastasis of hepatocellular carcinoma by acting as a ceRNA of LAPTM4B. Molecular Therapy:Nucleic Acids, 2017, 9:440-451.
    [44] Guo R, Chen HZ, Xiong CL, Zheng YZ, Fu ZM, Xu GJ, Du Y, Wang HP, Geng SH, Zhou DD, Liu SY, Chen DF. Analysis of differentially expressed circular RNAs and their regulation networks during the developmental process of Apis mellifera ligustica worker's midgut. Scientia Agricultura Sinica, 2018, 51(23):4575-4590. (in Chinese) 郭睿, 陈华枝, 熊翠玲, 郑燕珍, 付中民, 徐国钧, 杜宇, 王海朋, 耿四海, 周丁丁, 刘思亚, 陈大福. 意大利蜜蜂工蜂中肠发育过程中的差异表达环状RNA及其调控网络分析. 中国农业科学, 2018, 51(23):4575-4590.
    [45] Myllymäki H, Rämet M. JAK/STAT pathway in Drosophila immunity. Scandinavian Journal of Immunology, 2014, 79(6):377-385.
    [46] Geng T, Lv DD, Huang YX, Hou CX, Qin GX, Guo XJ. JAK/STAT signaling pathway-mediated immune response in silkworm (Bombyx mori) challenged by Beauveria bassiana. Gene, 2016, 595(1):69-76.
    [47] Li YY, Zhang R, Liu SL, Donath A, Peters RS, Ware J, Misof B, Niehuis O, Pfrender ME, Zhou X. The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera. BMC Evolutionary Biology, 2017, 17(1):269.
    [48] Thomson DW, Dinger ME. Endogenous microRNA sponges:evidence and controversy. Nature Reviews Genetics, 2016, 17(5):272-283.
    [49] Liu F, Shi TF, Yin W, Su X, Qi L, Huang ZY, Zhang SW, Yu LS. The microRNA ame-miR-279a regulates sucrose responsiveness of forager honey bees (Apis mellifera). Insect Biochemistry and Molecular Biology, 2017, 90:34-42.
    [50] Zhu KG, Liu MH, Fu Z, Zhou Z, Kong Y, Liang HW, Lin ZG, Luo J, Zheng HQ, Wan P, Zhang JF, Zen K, Chen J, Hu FL, Zhang CY, Ren J, Chen X. Plant microRNAs in larval food regulate honeybee caste development. PLoS Genetics, 2017, 13(8):e1006946.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杜宇,冯睿蓉,王杰,祝智威,张文德,余岢骏,隆琦,蔡宗兵,解彦玲,熊翠玲,郑燕珍,陈大福,郭睿. 中华蜜蜂6日龄幼虫响应蜜蜂球囊菌侵染的长链非编码RNA应答研究[J]. 微生物学报, 2021, 61(5): 1338-1358

复制
分享
文章指标
  • 点击次数:349
  • 下载次数: 1013
  • HTML阅读次数: 1052
  • 引用次数: 0
历史
  • 收稿日期:2020-07-10
  • 最后修改日期:2020-10-05
  • 在线发布日期: 2021-05-07
文章二维码