大洋最小含氧带生物地球化学循环及微生物多样性研究进展
作者:
基金项目:

大洋“十三五”深海生物资源计划(DY135-B2-09);国家重点研发项目(2017YFC1404501)


Advances in biogeochemical cycles and microbial diversity in the oxygen minimum zone
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [90]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    大洋的最小含氧带(oxygen minimum zones,OMZs)具有特殊的水动力和氧含量特征,该区域是氮流失的主要场所,也是各类生化反应发生的重要区域。OMZs的存在会对浮游生物的丰度、多样性、分布模式及呼吸方式产生较大影响。大洋OMZs中存在广泛的反硝化、厌氧氨氧化、甲烷厌氧氧化和隐性厌氧硫氧化作用等都是海洋物质循环的关键环节。全球海洋OMZs的规模在人类活动和全球变暖等因素的影响下也呈现出逐渐扩大的趋势。低氧环境的变化可以通过微生物多样性和群落结构稳定性进行判断,因此了解该区域的多样性水平是十分必要的。现有研究虽然对海洋OMZs的生物地球化学循环、微生物多样性和生态效应有了一定的认识,但对该区域总体情况和微生物生态学研究现状的系统性综合论述还较少,对海洋低氧环境的微生物活性、群落结构稳定性和分子代谢过程的研究还有较大的探讨空间。本文介绍了海洋低氧环境的分布情况和生态环境效应,全面且详细地论述了OMZs内各物质循环过程和微生物多样性的研究现状,指出尚未很好解决的生态学问题。

    Abstract:

    Oxygen minimum zones (OMZs) are characterized with special hydrodynamic and vertical oxygen profiles and are the main areas of nitrogen loss through fascinating biogeochemical reactions. The presence of OMZs affects the abundance, diversity, distribution, and respiration of plankton. There are some extensive reaction in OMZs, such as denitrification, anammox, anaerobic oxidation of methane, and cryptic anaerobic sulfide oxidation, which are the key parts of the ocean material cycle. Under the influence of human activities and global warming, the area of the OMZs is also expanding. The changes of the ocean hypoxic environment can be determined by microbial diversity and the stability of the community structure, so it is necessary to understand the diversity level of the area. With limited understanding of the biogeochemical cycle and microbial diversity in OMZs, the comprehensive discussion on the biogeochemical, microbiological and ecological features of OMZs remains to be rare. Particularly, there are still many gap knowledge on the microbial activity, community structure stability and metabolic network in these hypoxic environments of the world's ocean. This paper summarized the distribution and biogeochemical features of these marine hypoxic environments, and particularly discussed nutrient cycling processes and microbial communities in OMZs. Finally, it identified the current information gap and pointed out the future research directions in these interesting ocean habitats.

    参考文献
    [1] Stramma L, Johnson GC, Sprintall J, Mohrholz V. Expanding oxygen-minimum zones in the tropical oceans. Science, 2020, 320(5876):655-658.
    [2] Paulmier A, Ruiz-Pino D. Oxygen minimum zones (OMZs) in the modern ocean. Progress in Oceanography, 2009, 80(3/4):113-128.
    [3] Stramma L, Schmidtko S, Levin LA, Johnson GC. Ocean oxygen minima expansions and their biological impacts. Deep Sea Research Part I:Oceanographic Research Papers, 2010, 57(4):587-595.
    [4] Sturdivant SK, Díaz RJ, Cutter GR. Bioturbation in a declining oxygen environment, in situ observations from Wormcam. PLoS One, 2012, 7(4):e34539.
    [5] Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nature Reviews Microbiology, 2012, 10(6):381-394.
    [6] Busecke JJM, Resplandy L, Dunne JP. The equatorial undercurrent and the oxygen minimum zone in the pacific. Geophysical Research Letters, 2019, 46(12):6716-6725.
    [7] Li JL, Li N, Li FC, Zou T, Yu SX, Wang YC, Qin S, Wang GY. Spatial diversity of bacterioplankton communities in surface water of northern south China sea. PLoS One, 2014, 9(11):e113014.
    [8] Sen K, Bai MH, Sen B, Wang GY. Disentangling the structure and function of mycoplankton communities in the context of marine environmental heterogeneity. Science of the Total Environment, 2020:142635.
    [9] Beman JM, Carolan MT. Deoxygenation alters bacterial diversity and community composition in the ocean's largest oxygen minimum zone. Nature Communications, 2013, 4:2705.
    [10] Fuchsman CA, Palevsky HI, Widner B, Duffy M, Carlson MCG, Neibauer JA, Mulholland MR, Keil RG, Devol AH, Rocap G. Cyanobacteria and cyanophage contributions to carbon and nitrogen cycling in an oligotrophic oxygen-deficient zone. The ISME Journal, 2019, 13(11):2714-2726.
    [11] Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, Garçon V, Gilbert D, Gutiérrez D, Isensee K, Jacinto GS, Limburg KE, Montes I, Naqvi SWA, Pitcher GC, Rabalais NN, Roman MR, Rose KA, Seibel BA, Telszewski M, Yasuhara M, Zhang J. Declining oxygen in the global ocean and coastal waters. Science, 2018, 359(6371):eaam7240.
    [12] 池连宝. 长江口及邻近海域低氧区的时空变化特征与关键过程研究. 中国科学院大学(中国科学院海洋研究所)博士学位论文, 2019.
    [13] Gooday AJ, Jorissen F, Levin LA, Middelburg JJ, Naqvi SWA, Rabalais NN, Scranton M, Zhang J. Historical records of coastal eutrophication-induced hypoxia. Biogeosciences, 2009, 6(8):1707-1745.
    [14] Morgan-Smith D, Clouse MA, Herndl GJ, Bochdansky AB. Diversity and distribution of microbial eukaryotes in the deep tropical and subtropical North Atlantic Ocean. Deep Sea Research Part I:Oceanographic Research Papers, 2013, 78:58-69.
    [15] Rabalais NN, Díaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences, 2010, 7(2):585-619.
    [16] Sturdivant SK, Díaz RJ, Llansó R, Dauer DM. Relationship between hypoxia and macrobenthic production in Chesapeake Bay. Estuaries and Coasts, 2014, 37(5):1219-1232.
    [17] Long MC, Deutsch C, Ito T. Finding forced trends in oceanic oxygen. Global Biogeochemical Cycles, 2016, 30(2):381-397.
    [18] Zhang J, Gilbert D, Gooday AJ, Levin L, Naqvi SWA, Middelburg JJ, Scranton M, Ekau W, Peña A, Dewitte B, Oguz T, Monteiro PMS, Urban E, Rabalais NN, Ittekkot V, Kemp WM, Ulloa O, Elmgren R, Escobar-Briones E, Van der Plas AK. Natural and human-induced hypoxia and consequences for coastal areas:synthesis and future development. Biogeosciences, 2010, 7(5):1443-1467.
    [19] Carstensen J, Conley DJ, Bonsdorff E, Gustafsson BG, Hietanen S, Janas U, Jilbert T, Maximov A, Norkko A, Norkko J, Reed DC, Slomp CP, Timmermann K, Voss M. Hypoxia in the Baltic Sea:biogeochemical cycles, benthic fauna, and management. AMBIO, 2014, 43(1):26-36.
    [20] Rabalais NN, Turner RE, Díaz RJ, Justić D. Global change and eutrophication of coastal waters. ICES Journal of Marine Science, 2009, 66(7):1528-1537.
    [21] Levin LA, Ekau W, Gooday AJ, Jorissen F, Middelburg JJ, Naqvi SWA, Neira C, Rabalais NN, Zhang J. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences, 2009, 6(10):2063-2098.
    [22] Baustian MM, Rabalais NN. Seasonal composition of benthic macroinfauna exposed to hypoxia in the northern gulf of Mexico. Estuaries and Coasts, 2009, 32(5):975-983.
    [23] Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades. Nature, 2017, 542(7641):335-339.
    [24] Stramma L, Prince ED, Schmidtko S, Luo JG, Hoolihan JP, Visbeck M, Wallace DWR, Brandt P, Körtzinger A. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nature Climate Change, 2012, 2(1):33-37.
    [25] Bertagnolli AD, Stewart FJ. Microbial niches in marine oxygen minimum zones. Nature Reviews Microbiology, 2018, 16(12):723-729.
    [26] Hoogakker BAA, Lu ZL, Umling N, Jones L, Zhou XL, Rickaby REM, Thunell R, Cartapanis O, Galbraith E. Glacial expansion of oxygen-depleted seawater in the eastern tropical Pacific. Nature, 2018, 562(7727):410-413.
    [27] Garcia HE, Weathers K, Paver CR, Smolyar I, Boyer TP, Locarnini RA, Zweng MM, Mishonov AV, Baranova OK, Seidov D, Reagan JR. World ocean atlas 2018, volume 3:dissolved oxygen, apparent oxygen utilization, and oxygen saturation. NOAA Atlas NESDIS, 2018[2020-07-22]. https://www.nodc.noaa.gov/OC5/woa18/pubwoa18.html.
    [28] Stramma L, Visbeck M, Brandt P, Tanhua T, Wallace D. Deoxygenation in the oxygen minimum zone of the eastern tropical North Atlantic. Geophysical Research Letters, 2009, 36(20):L20607.
    [29] Diaz RJ, Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science, 2008, 321(5891):926-929.
    [30] Li XG, Song JM, Yuan HM, Li N, Duan LQ, Wang QD. The oxygen minimum zones (OMZs) and its eco-environmental effects in ocean. Marine Sciences, 2017, 41(12):127-138. (in Chinese) 李学刚, 宋金明, 袁华茂, 李宁, 段丽琴, 王启栋. 深海大洋最小含氧带(OMZ)及其生态环境效应. 海洋科学, 2017, 41(12):127-138.
    [31] Lü Y, Chen FR, Yang YQ, Cheng J, Wu SJ. Study on profile distribution of nutrients and exchange fluxes at sediment-water interface in inner Pearl River estuary in spring. Earth and Environment, 2006, 34(4):1-6. (in Chinese) 吕莹, 陈繁荣, 杨永强, 程俊, 吴世军. 春季珠江口内营养盐剖面分布和沉积物-水界面交换通量的研究. 地球与环境, 2006, 34(4):1-6.
    [32] Tian DF, Li XG, Song JM, Li N. Process and mechanism of nitrogen loss in the ocean oxygen minimum zone. Chinese Journal of Applied Ecology, 2019, 30(3):1047-1056. (in Chinese) 田东凡, 李学刚, 宋金明, 李宁. 海洋最小含氧带氮流失过程与机制. 应用生态学报, 2019, 30(3):1047-1056.
    [33] Wang SY, Zhu GB, Zhuang LJ, Li YX, Liu L, Lavik G, Berg M, Liu ST, Long XE, Guo JH, Jetten MSM, Kuypers MMM, Li FB, Schwark L, Yin CQ. Anaerobic ammonium oxidation is a major N-sink in aquifer systems around the world. The ISME Journal, 2020, 14(1):151-163.
    [34] Jayakumar A, Chang BX, Widner B, Bernhardt P, Mulholland MR, Ward BB. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North Pacific Ocean. The ISME Journal, 2017, 11(10):2356-2367.
    [35] Casciotti KL. Nitrogen and oxygen isotopic studies of the marine nitrogen cycle. Annual Review of Marine Science, 2016, 8:379-407.
    [36] Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16(5):263-276.
    [37] Dalsgaard T, Thamdrup B, Farías L, Revsbech NP. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnology and Oceanography, 2012, 57(5):1331-1346.
    [38] Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jørgensen BB, Kuenen JG, Damsté JSS, Strous M, Jetten MSM. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 2003, 422(6932):608-611.
    [39] Lam P, Lavik G, Jensen MM, van de Vossenberg J, Schmid M, Woebken D, Gutiérrez D, Amann R, Jetten MSM, Kuypers MMM. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(12):4752-4757.
    [40] Füssel J, Lam P, Lavik G, Jensen MM, Holtappels M, Günter M, Kuypers MMM. Nitrite oxidation in the Namibian oxygen minimum zone. The ISME Journal, 2011, 6(6):1200-1209.
    [41] Tsementzi D, Wu JY, Deutsch S, Nath S, Rodriguez-R LM, Burns AS, Ranjan P, Sarode N, Malmstrom RR, Padilla CC, Stone BK, Bristow LA, Larsen M, Glass JB, Thamdrup B, Woyke T, Konstantinidis KT, Stewart FJ. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature, 2016, 536(7615):179-183.
    [42] Kraemer S, Ramachandran A, Colatriano D, Lovejoy C, Walsh DA. Diversity and biogeography of SAR11 bacteria from the Arctic Ocean. The ISME Journal, 2020, 14(1):79-90.
    [43] Pajares S, Soto-Jiménez MF, Merino-Ibarra M. Molecular and isotopic evidence of the distribution of nitrogen-cycling microbial communities in the oxygen minimum zone of the Tropical Mexican Pacific. FEMS Microbiology Ecology, 2019, 95(10):fiz143.
    [44] Stief P, Fuchs-Ocklenburg S, Kamp A, Manohar CS, Houbraken J, Boekhout T, de Beer D, Stoeck T. Dissimilatory nitrate reduction by Aspergillus terreus isolated from the seasonal oxygen minimum zone in the Arabian Sea. BMC Microbiology, 2014, 14:35.
    [45] Manohar CS, Menezes LD, Ramasamy KP, Meena RM. Phylogenetic analyses and nitrate-reducing activity of fungal cultures isolated from the permanent, oceanic oxygen minimum zone of the Arabian Sea. Canadian Journal of Microbiology, 2015, 61(3):217-226.
    [46] Sun ZL, He YJ, Li J, Huang W, Li Q, Li JW, Wang F. Progress and environmental effect in seafloor anaerobic oxidation of methane. Advances in Earth Sciences, 2012, 27(11):1262-1273. (in Chinese) 孙治雷, 何拥军, 李军, 黄威, 李清, 李季伟, 王丰. 海洋环境中甲烷厌氧氧化机理及环境效应. 地球科学进展, 2012, 27(11):1262-1273.
    [47] Zhang Y, Zhao MX, Cui Q, Fan W, Qi JG, Chen Y, Zhang YY, Gao KS, Fan JF, Wang GY, Yan CL, Lu HL, Luo YW, Zhang ZL, Zheng Q, Xiao W, Jiao NZ. Processes of coastal ecosystem carbon sequestration and approaches for increasing carbon sink. Science China Earth Sciences, 2017, 60(5):809-820.
    [48] Li N, Li XG, Song JM. Key biogeochemistry processes of marine carbon cycle. Chinese Journal of Marine Environmental Science, 2005, 24(2):75-80. (in Chinese) 李宁, 李学刚, 宋金明. 海洋碳循环研究的关键生物地球化学过程. 海洋环境科学, 2005, 24(2):75-80.
    [49] Liu JX, Chen H, Xue D, Gao YH, Liu JL, Yang J. Advances in microbial mediated anaerobic oxidation of methane and its influencing factors. Chinese Journal of Ecology, 2020, 39(3):1033-1044. (in Chinese) 刘俊霞, 陈槐, 薛丹, 高永恒, 刘建亮, 杨军. 微生物介导的甲烷厌氧氧化过程及其影响因子研究进展. 生态学杂志, 2020, 39(3):1033-1044.
    [50] Thamdrup B, Steinsdóttir HGR, Bertagnolli AD, Padilla CC, Patin NV, Garcia-Robledo E, Bristow LA, Stewart FJ. Anaerobic methane oxidation is an important sink for methane in the ocean's largest oxygen minimum zone. Limnology and Oceanography, 2019, 64(6):2569-2585.
    [51] Wang WQ, Wang BX, Zhang WJ, Wang TE. Reviews on anaerobic methane oxidation and influencing factor in marine sediment. Marine Environmental Science, 2011, 30(5):747-751. (in Chinese) 王维奇, 王宝霞, 张文娟, 王天鹅. 海洋沉积物甲烷厌氧氧化及其影响因子研究进展. 海洋环境科学, 2011, 30(5):747-751.
    [52] Chronopoulou PM, Shelley F, Pritchard WJ, Maanoja ST, Trimmer M. Origin and fate of methane in the eastern tropical north pacific oxygen minimum zone. The ISME Journal, 2017, 11(6):1386-1399.
    [53] Pozzato L, van Oevelen D, Moodley L, Soetaert K, Middelburg JJ. Carbon processing at the deep-sea floor of the Arabian Sea oxygen minimum zone:a tracer approach. Journal of Sea Research, 2013, 78:45-58.
    [54] Rasse R, Dall'Olmo G. Do oceanic hypoxic regions act as barriers for sinking particles? a case study in the eastern tropical north Atlantic. Global Biogeochemical Cycles, 2019, 33(12):1611-1630.
    [55] Kurian S, Kessarkar PM, Purnachandra Rao V, Reshma K, Sarkar A, Pattan JN, Naqvi SWA. Controls on organic matter distribution in oxygen minimum zone sediments from the continental slope off western India. Journal of Marine Systems, 2020, 207:103118.
    [56] Ruvalcaba Baroni I, Palastanga V, Slomp CP. Enhanced organic carbon burial in sediments of oxygen minimum zones upon ocean deoxygenation. Frontiers in Marine Science, 2020, 6:839.
    [57] Al Azhar M, Canfield DE, Fennel K, Thamdrup B, Bjerrum CJ. A model-based insight into the coupling of nitrogen and sulfur cycles in a coastal upwelling system. Journal of Geophysical Research:Biogeosciences, 2014, 119(3):264-285.
    [58] Kamaleson AS, Gonsalves MJ, Kumar S, Jineesh VK, LokaBharathi PA. Spatio-temporal variations in sulfur-oxidizing and sulfate-reducing bacterial activities during upwelling, off south-west coast of India. Oceanologia, 2019, 61(4):427-444.
    [59] Callbeck CM, Lavik G, Ferdelman TG, Fuchs B, Gruber-Vodicka HR, Hach PF, Littmann S, Schoffelen NJ, Kalvelage T, Thomsen S, Schunck H, Löscher CR, Schmitz RA, Kuypers MMM. Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nature Communications, 2018, 9:1729.
    [60] Pufahl PK, Squires AD, Murphy JB, Quesada C, Lokier SW, Álvaro JJ, Hatch J. Ordovician ironstone of the Iberian margin:coastal upwelling, ocean anoxia and Palaeozoic biodiversity. The Depositional Record, 2020, 6(3):581-604.
    [61] Crowe SA, Cox RP, Jones C, Fowle DA, Santibañez-Bustos JF, Ulloa O, Canfield DE. Decrypting the sulfur cycle in oceanic oxygen minimum zones. The ISME Journal, 2018, 12(9):2322-2329.
    [62] Carolan MT, Smith JM, Beman JM. Transcriptomic evidence for microbial sulfur cycling in the eastern tropical North Pacific oxygen minimum zone. Frontiers in Microbiology, 2015, 6:334.
    [63] Menezes LD, Fernandes GL, Mulla AB, Meena RM, Damare SR. Diversity of culturable sulphur-oxidising bacteria in the oxygen minimum zones of the northern Indian Ocean. Journal of Marine Systems, 2020, 209:103085.
    [64] Sulu-Gambari F, Hagens M, Behrends T, Seitaj D, Meysman FJR, Middelburg J, Slomp CP. Phosphorus cycling and burial in sediments of a seasonally hypoxic marine basin. Estuaries and Coasts, 2018, 41(4):921-939.
    [65] Mackey KRM, Mioni CE, Ryan JP, Paytan A. Phosphorus cycling in the red tide incubator region of Monterey bay in response to upwelling. Frontiers in Microbiology, 2012, 3:33.
    [66] Mathew D, Gireeshkumar TR, Balachandran KK, Udayakrishnan PB, Shameem K, Deepulal PM, Nair M, Madhu NV, Muraleedharan KR. Influence of hypoxia on phosphorus cycling in Alappuzha mud banks, southwest coast of India. Regional Studies in Marine Science, 2020, 34:101083.
    [67] Liu J, Krom MD, Ran XB, Zang JY, Liu JH, Yao QZ, Yu ZG. Sedimentary phosphorus cycling and budget in the seasonally hypoxic coastal area of Changjiang Estuary. Science of the Total Environment, 2020, 713:136389.
    [68] Pan F, Guo ZR, Cai Y, Liu HT, Wu JY, Fu YY, Wang B, Gao AG. Kinetic exchange of remobilized phosphorus related to phosphorus-iron-sulfur biogeochemical coupling in coastal sediment. Water Resources Research, 2019, 55(12):10494-10517.
    [69] Lin P, Klump JV, Guo LD. Dynamics of dissolved and particulate phosphorus influenced by seasonal hypoxia in Green Bay, Lake Michigan. Science of the Total Environment, 2016, 541:1070-1082.
    [70] Schulz-Vogt HN, Pollehne F, Jürgens K, Arz HW, Beier S, Bahlo R, Dellwig O, Henkel JV, Herlemann DPR, Krüger, S, Leipe T, Schott T. Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea. The ISME Journal, 2019, 13(5):1198-1208.
    [71] Fernandes GL, Shenoy BD, Menezes LD, Meena RM, Damare SR. Prokaryotic diversity in oxygen depleted waters of the Bay of Bengal inferred using culture-dependent and -independent methods. Indian Journal of Microbiology, 2019, 59(2):193-199.
    [72] Liu XH, Sen B, Zhao Y, Bai MH, He YD, Xie YX, Li JY, Wang GY. Gradients of three coastal environments off the south china sea and their impacts on the dynamics of heterotrophic microbial communities. Science of the Total Environment, 2019, 659:499-506.
    [73] Padilla CC, Bristow LA, Sarode N, Garcia-Robledo E, Gómez Ramírez E, Benson CR, Bourbonnais A, Altabet MA, Girguis PR, Thamdrup B, Stewart FJ. NC10 bacteria in marine oxygen minimum zones. The ISME Journal, 2016, 10(8):2067-2071.
    [74] Bandekar M, Ramaiah N, Jain A, Meena RM. Seasonal and depth-wise variations in bacterial and archaeal groups in the Arabian Sea oxygen minimum zone. Deep Sea Research Part II:Topical Studies in Oceanography, 2018, 156:4-18.
    [75] Rajpathak SN, Banerjee R, Mishra PG, Khedkar AM, Patil YM, Joshi SR, Deobagkar DD. An exploration of microbial and associated functional diversity in the OMZ and non-OMZ areas in the Bay of Bengal. Journal of Biosciences, 2018, 43(4):635-648.
    [76] Matys ED, Sepúlveda J, Pantoja S, Lange CB, Caniupán M, Lamy F, Summons RE. Bacteriohopanepolyols along redox gradients in the humboldt current system off northern Chile. Geobiology, 2017, 15(6):844-857.
    [77] Shenoy DM, Suresh I, Uskaikar H, Kurian S, Vidya PJ, Shirodkar G, Gauns MU, Naqvi SWA. Variability of dissolved oxygen in the Arabian Sea oxygen minimum zone and its driving mechanisms. Journal of Marine Systems, 2020, 204:103310.
    [78] Fernandes GL, Shenoy BD, Damare SR. Diversity of bacterial community in the oxygen minimum zones of Arabian Sea and bay of Bengal as deduced by illumina sequencing. Frontiers in Microbiology, 2020, 10:3153.
    [79] Qian G, Wang J, Kan JJ, Zhang XD, Xia ZQ, Zhang XC, Miao YY, Sun J. Diversity and distribution of anammox bacteria in water column and sediments of the Eastern Indian Ocean. International Biodeterioration & Biodegradation, 2018, 133:52-62.
    [80] Bandekar M, Ramaiah N, Meena RM. Diversity and abundance of denitrifying and anammox bacteria from the Arabian Sea oxygen minimum zone. Deep Sea Research Part II:Topical Studies in Oceanography, 2018, 156:19-26.
    [81] Sun X, Kop LFM, Lau MCY, Frank J, Jayakumar A, Lücker S, Ward BB. Uncultured Nitrospina-like species are major nitrite oxidizing bacteria in oxygen minimum zones. The ISME Journal, 2019, 13(10):2391-2402.
    [82] Wang GY, Bai MH, Xie YX, Song ZQ, Xie ND, Zhang S. Perspective and significance of unicellular protists in ocean carbon sink. Microbiology China, 2018, 45(4):886-892. (in Chinese) 汪光义, 白默涵, 谢云轩, 宋智泉, 谢宁栋, 张赛. 单细胞原生生物在海洋碳汇研究中的重要性和展望. 微生物学通报, 2018, 45(4):886-892.
    [83] Wang YQ, Sen K, He YD, Xie YX, Wang GY. Impact of environmental gradients on the abundance and diversity of planktonic fungi across coastal habitats of contrasting trophic status. Science of the Total Environment, 2019, 683:822-833.
    [84] Wang X, Singh P, Gao Z, Zhang XB, Johnson ZI, Wang GY. Distribution and diversity of planktonic fungi in the west pacific warm pool. PLoS One, 2014, 9(7):e101523.
    [85] Xu ZM, Wang M, Wu WX, Li YF, Liu Q, Han YY, Jiang Y, Shao HB, McMinn A, Liu HB. Vertical distribution of microbial eukaryotes from surface to the Hadal zone of the Mariana trench. Frontiers in Microbiology, 2018, 9:2023.
    [86] Parris DJ, Ganesh S, Edgcomb VP, DeLong EF, Stewart FJ. Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile. Frontiers in Microbiology, 2014, 5:543.
    [87] Duret MT, Pachiadaki MG, Stewart FJ, Sarode N, Christaki U, Monchy S, Srivastava A, Edgcomb VP. Size-fractionated diversity of eukaryotic microbial communities in the Eastern Tropical North Pacific oxygen minimum zone. FEMS Microbiology Ecology, 2015, 91(5):fiv037.
    [88] Duan YB, Xie ND, Song ZQ, Ward CS, Yung CM, Hunt DE, Johnson ZI, Wang GY. A high-resolution time series reveals distinct seasonal patterns of planktonic fungi at a temperate coastal ocean site (Beaufort, North Carolina, USA). Applied and Environmental Microbiology, 2018, 84(21):e00967-18.
    [89] Tang XX, Yu LB, Xu W, Zhang XS, Xu XST, Wang QL, Wei SP, Qiu YK. Fungal diversity of deep-sea sediments in mid-oceanic ridge area of the east pacific and the south Indian Oceans. Botanica Marina, 2020, 63(2):183-196.
    [90] Jebaraj CS, Raghukumar C, Behnke A, Stoeck T. Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiology Ecology, 2010, 71(3):399-412.
    相似文献
    引证文献
引用本文

靳蕊,何耀东,李佳倩,汪光义. 大洋最小含氧带生物地球化学循环及微生物多样性研究进展[J]. 微生物学报, 2021, 61(6): 1582-1597

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-29
  • 最后修改日期:2020-11-17
  • 在线发布日期: 2021-06-05
文章二维码