Abstract:Oxygen minimum zones (OMZs) are characterized with special hydrodynamic and vertical oxygen profiles and are the main areas of nitrogen loss through fascinating biogeochemical reactions. The presence of OMZs affects the abundance, diversity, distribution, and respiration of plankton. There are some extensive reaction in OMZs, such as denitrification, anammox, anaerobic oxidation of methane, and cryptic anaerobic sulfide oxidation, which are the key parts of the ocean material cycle. Under the influence of human activities and global warming, the area of the OMZs is also expanding. The changes of the ocean hypoxic environment can be determined by microbial diversity and the stability of the community structure, so it is necessary to understand the diversity level of the area. With limited understanding of the biogeochemical cycle and microbial diversity in OMZs, the comprehensive discussion on the biogeochemical, microbiological and ecological features of OMZs remains to be rare. Particularly, there are still many gap knowledge on the microbial activity, community structure stability and metabolic network in these hypoxic environments of the world's ocean. This paper summarized the distribution and biogeochemical features of these marine hypoxic environments, and particularly discussed nutrient cycling processes and microbial communities in OMZs. Finally, it identified the current information gap and pointed out the future research directions in these interesting ocean habitats.