硫酸盐还原菌Desulfotomaculum reducens ZTS1厌氧降解昭通褐煤
作者:
基金项目:

中央高校基本科研业务费专项资金(2017XKQY037);山西省晋煤集团煤与煤层气共采国家重点实验室开放基金(2018KF12)


Anaerobic degradation of Zhaotong lignite by sulfate reducing bacterium Desulfotomaculum reducens ZTS1
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 以云南昭通褐煤为研究对象,从矿井水富集产物中分离得到SRB菌株Desulfotomaculum reducens ZTS1厌氧降解褐煤,分析研究SRB菌株处理褐煤前后的物化性质变化。[方法] 采用工业和元素分析、XRD、FT-IR、SEM和低温液氮吸附法比较研究SRB厌氧降解褐煤前后矿物组成、有机官能团、表面形貌和孔隙结构变化。[结果] D.reducens ZTS1厌氧降解褐煤后灰分和挥发分略有降低,碳、氮和硫元素的含量降低,氧的含量增加,煤中硫代硫酸钠消失,FT-IR结果表明褐煤长链烃上的甲基和亚甲基团增多,游离羟基减少。煤表面粗糙度增加,小孔径的孔隙增多,孔径比表面积增大。[结论] D.reducens ZTS1可以厌氧降解昭通褐煤,厌氧降解后煤的物化性质发生变化。

    Abstract:

    [Objective] A SRB strain Desulfotomaculum reducens ZTS1 isolated from enrichment from coal mine water was used to anaerobically degrade Yunnan Zhaotong lignite, and the physicochemical properties of which before and after degradation with SRB strain were analyzed. [Methods] Mineral components, organic functional groups, surface morphology, pore structure changes of lignite minerals before and after anaerobic degradation with SRB were studied by proximate and ultimate analysis, X-ray diffraction, Fourier transform infared spectromotry, Scanning electron microscopy and low temperature liquid nitrogen adsorption method. [Results] After anaerobic degradation by D. reducens ZTS1, the ash and volatiles of lignite decreased slightly, the contents of carbon, nitrogen and sulfur decreased, while the content of oxygen increased. The sodium thiosulfate disappeared in the residual coal. FT-IR results showed that the methyl and methylene groups on the long chain hydrocarbon of lignite increased, while the free hydroxyl group decreased. With the increase of coal surface roughness, the pore size of small pore and the specific surface area of pore size Increases.[Conclusion] D. reducens ZTS1 can anaerobically degrade Zhaotong lignite, and change the physicochemical properties of the coal.

    参考文献
    [1] Park SY, Liang YN. Biogenic methane production from coal:a review on recent research and development on microbially enhanced coalbed methane (MECBM). Fuel, 2016, 166:258-267.
    [2] Su XB, Xia DP, Zhao WZ, Fu HJ, Guo HG, He H, Bao Y, Li D, Wei GQ. Research advances of coalbed gas bioengineering. Coal Science and Technology, 2020, 48(6):1-30. (in Chinese) 苏现波, 夏大平, 赵伟仲, 伏海蛟, 郭红光, 何环, 鲍园, 李丹, 魏国琴. 煤层气生物工程研究进展. 煤炭科学技术, 2020, 48(6):1-30.
    [3] Zhao H, He H, Wang JZ, Tan KL, Zhao N, Ren HX. Variation of microbial community before and after biogas production with Shengli lignite in Inner Mongolia. Journal of China Coal Society, 2019, 44(4):1224-1231. (in Chinese) 赵晗, 何环, 王江泽, 谭凯丽, 赵娜, 任恒星. 内蒙胜利褐煤生物产气前后微生物群落变化. 煤炭学报, 2019, 44(4):1224-1231.
    [4] Strąpoć D, Mastalerz M, Dawson K, Macalady J, Callaghan AV, Wawrik B, Turich C, Ashby M. Biogeochemistry of microbial coal-bed methane. Annual Review of Earth and Planetary Sciences, 2011, 39(1):617-656.
    [5] Han F, Zhang YG, Meng AH, Li QH. FTIR analysis of Yunnan Lignite. Journal of China Coal Society, 2014, 39(11):2293-2299. (in Chinese) 韩峰, 张衍国, 蒙爱红, 李清海. 云南褐煤结构的FTIR分析. 煤炭学报, 2014, 39(11):2293-2299.
    [6] Wang AK, Qin Y, Lin YC, Lan FJ, Yang S. Enrichment and cultivation of natural methanogen and simulation of biogenetic gas generation from brown coal samples. Geological Journal of China Universities, 2010, 16(1):80-85. (in Chinese) 王爱宽, 秦勇, 林玉成, 兰凤娟, 杨松. 褐煤中天然产甲烷菌富集培养与生物气产出模拟. 高校地质学报, 2010, 16(1):80-85.
    [7] Li W, Wang LY, Duan RY, Liu JF, Gu JD, Mu BZ. Microbial community characteristics of petroleum reservoir production water amended with n-alkanes and incubated under nitrate-, sulfate-reducing and methanogenic conditions. International Biodeterioration & Biodegradation, 2012, 69:87-96.
    [8] Dong LL, Cao GL, Guo XZ, Liu TS, Wu JW, Ren NQ. Efficient biogas production from cattle manure in a plug flow reactor:a large scale long term study. Bioresource Technology, 2019, 278:450-455.
    [9] Beckmann S, Luk AWS, Gutierrez-Zamora ML, Chong NHH, Thomas T, Lee M, Manefield M. Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed-methane generation. The ISME Journal, 2019, 13(3):632-650.
    [10] Li Y, Tang SH, Zhang SH, Xi ZD, Wang PF. Biogeochemistry and water-rock interactions of coalbed methane Co-produced water in the Shizhuangnan block of the southern Qinshui basin, China. Water, 2019, 12(1):130.
    [11] He H, Zhan D, Chen F, Huang ZX, Huang HZ, Wang AK, Huang GH, Muhammad IA, Tao XX. Microbial community succession between coal matrix and culture solution in a simulated methanogenic system with lignite. Fuel, 2020, 264:116905.
    [12] Ge XG, Cheng JM, Yang L, Ye YK, Chen LW. An experimental study of Desulfovibrio sp. anaerobic degradation of & gt; C12 organic compounds of Huainan coal. Earth Science Frontiers, 2015, 22(1):328-334. (in Chinese) 葛晓光, 程健明, 杨柳, 叶永康, 陈陆望. Desulfovibrio sp.厌氧代谢淮南煤中>C12有机组分的实验研究. 地学前缘, 2015, 22(1):328-334.
    [13] An TT, Picardal FW. Desulfocarbo indianensis gen. nov., sp. nov., a benzoate-oxidizing, sulfate-reducing bacterium isolated from water extracted from a coal bed. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt_8):2907-2914.
    [14] Guo HY, Luo Y, Ma JQ, Xia DP, Ji CJ, Su XB. Analysis of mechanism and permeability enhancing effect via microbial treatment on different-rank coals. Journal of China Coal Society, 2014, 39(9):1886-1891. (in Chinese) 郭红玉, 罗源, 马俊强, 夏大平, 季长江, 苏现波. 不同煤阶煤的微生物增透效果和机理分析. 煤炭学报, 2014, 39(9):1886-1891.
    [15] Zhang PP, Guo HG, Duan KX, Chen C, Liang WG. Effects of microbial anaerobic metabolites on nanoporosity of anthracite. Journal of China Coal Society, 2020, 45(11):3841-3852. (in Chinese) 张攀攀, 郭红光, 段凯鑫, 陈超, 梁卫国. 无烟煤厌氧代谢产物对其纳米孔隙的影响. 煤炭学报, 2020, 45(11):3841-3852.
    [16] Zhang R, Liu SM, Bahadur J, Elsworth D, Wang Y, Hu GL, Liang YN. Changes in pore structure of coal caused by coal-to-gas bioconversion. Scientific Reports, 2017, 7:3840.
    [17] Pandey R, Harpalani S, Feng RM, Zhang J, Liang YN. Changes in gas storage and transport properties of coal as a result of enhanced microbial methane generation. Fuel, 2016, 179:114-123.
    [18] Xia DP, Su XB, Wu Y, Chen X, Wang SS. Effect of experiment of different pretreatment methods and simulating biogenic methane production on coal structure. Journal of China Coal Society, 2013, 38(1):129-133. (in Chinese) 夏大平, 苏现波, 吴昱, 陈鑫, 王三帅. 不同预处理方式和模拟产气实验对煤结构的影响. 煤炭学报, 2013, 38(1):129-133.
    [19] Liu MJ, Li GQ, HANI M, Liu YW, Deng QG, Zhao FJ. Genesis modes discussion of H2S gas in coal mines. Journal of China Coal Society, 2011, 36(6):978-983. (in Chinese) 刘明举, 李国旗, HANI Mitri, 刘彦伟, 邓奇根, 赵发军. 煤矿硫化氢气体成因类型探讨. 煤炭学报, 2011, 36(6):978-983.
    [20] Yang SJ, Pang QH, Xu TX, He ZJ, Song TF, Zhang JH. FTIR and Raman spectroscopy characterization of coking coals with diverse coalification. Coke and Chemistry, 2019, 62(6):211-219.
    [21] 陈凡. 硫酸盐还原菌的分离及其对褐煤的作用研究. 中国矿业大学博士学位论文, 2020.
    [22] Sun M, Wang Q, He C, Gao JW, Wang RC, Zhang YJ, Xu L, Yao QX, Ma XX. Pyrolysis characteristics of Shendong coal by CH3OH-THF swelling coupled with in situ loading of metal ions. Fuel, 2019, 253:409-419.
    [23] Xia DP, Zhang HW, Su XB, Deng Z, Wang Q. Adsorption and heat characteristics of coal-microorganisms during the cogeneration of H2 and CH4 following pretreatment with white rot fungi. Journal of Cleaner Production, 2020, 255:120242.
    [24] Plugge CM, Zhang WW, Scholten JCM, Stams AJM. Metabolic flexibility of sulfate-reducing bacteria. Frontiers in Microbiology, 2011, 2:81.
    [25] Rouqu erol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK. Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, 2013, 66(8):1740-1758.
    [26] Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 2013, 57(4):2201-2218.
    [27] Xiao D, Wang EY, Peng SP, Wu JY. Responses of coal anaerobic fermentation fractures development. Journal of China Coal Society, 2017, 42(5):1207-1212. (in Chinese) 肖栋, 王恩元, 彭苏萍, 吴俊勇. 煤体微生物厌氧发酵对裂隙发育的响应规律. 煤炭学报, 2017, 42(5):1207-1212.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘薇,李啸宇,何环,陈子豪,陈凡,王江泽,刘健,陈林勇,黄再兴. 硫酸盐还原菌Desulfotomaculum reducens ZTS1厌氧降解昭通褐煤[J]. 微生物学报, 2021, 61(6): 1610-1620

复制
分享
文章指标
  • 点击次数:320
  • 下载次数: 1198
  • HTML阅读次数: 1373
  • 引用次数: 0
历史
  • 收稿日期:2021-04-26
  • 最后修改日期:2021-05-18
  • 在线发布日期: 2021-06-05
文章二维码