咸海湖泊退缩对岸边土壤真菌和植物内生真菌的影响研究
作者:
基金项目:

国家自然科学基金(91751206)


Influence of lake desiccation on the entophytic and soil fungal communities on the Aral Sea shore
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 研究咸海岸边不同暴露时期土壤带的土壤真菌和植物内生真菌群落构成及其对湖泊干涸的响应。[方法] 从咸海湖岸远端(土壤带的暴露时间最长)到湖岸近端(土壤带的暴露时间最短)的不同土壤带采集土壤样品,对其进行地球化学和矿物学分析。同时也采集各土壤带的土壤样品和优势植物,通过ITS基因高通量测序方法分析土壤真菌和植物内生真菌群落构成,进而探讨其如何响应湖泊干涸(如盐度升高、矿物组分变化、植物种类丰富度变化等)过程。[结果] 持续暴露的咸海湖床从湖泊远岸到湖泊近岸形成了一个连续的盐度梯度:E48(暴露于1970年之前,总可溶解盐0.5±0.5 g/L);E38(暴露于1980年之前,总可溶解盐0.4±0.2 g/L);E28(暴露于1990年之前,总可溶解盐23.3±2.1 g/L);E18(暴露于2000年之前,总可溶解盐23.7±7.5 g/L);E9(暴露于2009年之前,总可溶解盐71.3±6.1 g/L);E1(暴露于2017年之前,总可溶解盐62.9±10.7 g/L)和E0(2018年湖岸线附近沉积物样品,总可溶解盐69.9±8.3 g/L)。咸海岸边不同土壤带分布着不同的植物:梭梭(Haloxylon ammodendron)在E48和E38区域中占优势地位;滨藜(Chenopodium album)在E28、E18和E9区域占优势;而在E1和E0区域无可见植物物种分布。另外,咸海岸边不同土壤带的主要矿物成分也存在差异:粘土矿物和蒸发岩的含量从咸海湖岸远端到湖岸近端逐渐增加,而碳酸盐矿物含量逐渐减少。咸海岸边不同土壤带土壤样品优势真菌类群(>5%)为散囊菌纲(Eurotiomycetes)、粪壳菌纲(Sordariomycetes)、锤舌菌纲(Leotiomycetes)、座囊菌纲(Dothideomycetes)、黑粉菌亚门(Ustilaginomycotina)和伞菌纲(Agaricomycetes),且按植物种类丰富度进行聚类。而植物样品优势真菌类群为未知真菌门类(>97.8%),且按植物种类进行聚类。线性回归结果显示,咸海岸边不同土壤带土壤样品真菌群落差异性与暴露时间距离具有显著相关(R2=0.32,P<0.05),而与总可溶解盐差异则无明显相关性。而植物内生真菌群落差异性与暴露时间距离/总可溶解盐差异之间均无显著相关。Mantel检验结果显示,咸海岸边不同土壤带土壤真菌群落与植物种类丰富度和矿物成分组成(如白云石、方解石、微斜长石和石膏)呈显著相关(P<0.05),其中植物种类丰富度和方解石含量的相关性系数最大;植物内生真菌群落与方解石含量之间呈显著相关(P<0.05)。[结论] 咸海岸边不同暴露时期土壤带的土壤真菌和植物内生真菌种群结构具有时空差异,与植物种类丰富度和特定矿物组成相关,而与总可溶解盐无显著相关。

    Abstract:

    [Objective] To explore the diversity and community compositions of onshore soil and plant endophytic fungi in the soil zones at different exposure periods and their response to continuous lake desiccation in the Aral Sea. [Methods] Soil samples were collected from farshore (exposed before 1970) towards the present shoreline in the Aral Sea, followed by geochemistry and mineralogy analysis. At the same time, soil samples and dominant aboveground plants from different onshore soil zones were collected, and their fungal diversity were analyzed by ITS gene high-throughput sequencing. The fungal response to lake desiccation (such as salinity, mineralogy and plant species) were explored. [Results] The results showed that the continuously exposed lake bed formed an increasing gradient of total soluble salts:E48 (exposed before 1970, total soluble salts (in abbr. TSS):0.5±0.5 g/L);E38 (exposed before 1980, TSS:0.4±0.2 g/L);E28 (exposed before 1990, TSS:23.3±2.1 g/L);E18 (exposed before 2000, TSS:23.7±7.5 g/L);E9 (exposed before 2009, TSS:71.3±6.1 g/L);E1 (exposed in 2017, TSS:62.9±10.7 g/L); E0 (the present shoreline in 2018, TSS:69.9±8.3 g/L). These soil zones were inhabited by different plants:Haloxylon ammodendron were dominated in the E38 and E28 zones; Chenopodium album were dominated in the E28, E19 and E9 zones; and no visible plants were found in the E1 and E0 zones. In addition, the mineralogical composition varied among different soil zones:the contents of clay mineral and evaporites generally increased from farshore towards the present shoreline of the Aral Sea, while the content of carbonates gradually decreased. The dominant fungal communities (>5%) in the studied soil samples were Eurotiomycetes, Sordariomycetes, Leotiomycetes, Dothideomycetes, Ustilaginomycotina and Agaricomycetes, and were clustered by plant species richness. While a large number of unknown fugal species (>97.8%) were dominated in the endophytic fungal communities, and were clustered by plant species. Linear regression showed that the fungal community differences in the soil sample from different onshore soil zones had a significant (R2=0.32, P<0.05) correlation with the exposure time difference, whereas there was no significant correlation with the difference in total soluble salts. In addition, there was no significant difference between the plant endophytic fungal community difference and exposure time distance and total soluble salts difference. Mantel test showed that fungal communities in different soil zones had significant (P<0.05) correlations with plant species richness and dolomite, calcite, microcline and gypsum. Among them, plant species richness and calcite were the most important factors influencing on soil fungal communities. There was a significant (P<0.05) correlation between the plant endophytic fungal community and calcite. [Conclusion] The community compositions of soil fungi and plant endophytic fungi in different Aral Sea soil zones show temporal and spatial variations, which could be ascribed to plant species (richness) and specific mineral compositions, but not significantly correlated with total soluble salts.

    参考文献
    [1] Zhao CZ, Zhang H, Song CP, Zhu JK, Shabala S. Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 2020, 1(1):100017.
    [2] Rath KM, Fierer N, Murphy DV, Rousk J. Linking bacterial community composition to soil salinity along environmental gradients. The ISME Journal, 2019, 13(3):836-846.
    [3] Yang LM, Han M, Li JD. Effect of soil salinization on the plant diversity of Leymus chinensis grassland. Acta Agrestia Sinica, 1997, 5(3):154-160. (in Chinese) 杨利民, 韩梅, 李建东. 土壤盐碱化对羊草草地植物多样性的影响. 草地学报, 1997, 5(3):154-160.
    [4] He JS, Wang ZQ, Fang JY. Issues and prospects of belowground ecology with special reference to global climate change. Chinese Science Bulletin, 2004, 49(13):1226-1233. (in Chinese) 贺金生, 王政权, 方精云. 全球变化下的地下生态学:问题与展望. 科学通报, 2004, 49(13):1226-1233.
    [5] Tedersoo L, Bahram M, Põlme S, Kõljalg U, Abarenkov K. Fungal biogeography. Global diversity and geography of soil fungi. Science, 2014, 346(6213):1256688.
    [6] Fierer N. Embracing the unknown:disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 2017, 15(10):579-590.
    [7] de Vries FT, Hoffland E, van Eekeren N, Brussaard L, Bloem J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology and Biochemistry, 2006, 38(8):2092-2103.
    [8] Yang T, Adams JM, Shi Y, He JS, Jing X, Chen LT, Tedersoo L, Chu HY. Soil fungal diversity in natural grasslands of the Tibetan Plateau:associations with plant diversity and productivity. New Phytologist, 2017, 215(2):756-765.
    [9] Wu QS, Fei YJ, Wei QA. Study on the development of root arbuscular mycorrhizal of lawn grass plants and its relationship with soil available phosphorus. Hubei Agricultural Sciences, 2010, 49(9):2101-2103. (in Chinese) 吴强盛, 费永俊, 韦启安. 草坪草根系丛枝菌根发育及其与土壤有效磷的关系. 湖北农业科学, 2010, 49(9):2101-2103.
    [10] Montiel-Rozas MDM, López-García Á, Madejón P, Madejón E. Native soil organic matter as a decisive factor to determine the arbuscular mycorrhizal fungal community structure in contaminated soils. Biology and Fertility of Soils, 2017, 53(3):327-338.
    [11] Sheng M, Tang M, Zhang FF, Huang YH. Effect of soil factors on arbuscular mycorrhizal fungi in saline alkaline soils of Gansu, Inner Mongolia and Ningxia. Biodiversity Science, 2011, 19(1):85-92. (in Chinese) 盛敏, 唐明, 张峰峰, 黄艳辉. 土壤因子对甘肃、宁夏和内蒙古盐碱土中AM真菌的影响. 生物多样性, 2011, 19(1):85-92.
    [12] Zhang SM, Huang YM, Ni YX, Zhong QQ. Effects of artificial forest and grass on soil fungal community at southern Ningxia mountain. China Environmental Science, 2018, 38(4):1449-1458. (in Chinese) 张树萌, 黄懿梅, 倪银霞, 钟祺琪. 宁南山区人工林草对土壤真菌群落的影响. 中国环境科学, 2018, 38(4):1449-1458.
    [13] Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 2013, 64:807-838.
    [14] Cordovez V, Dini-Andreote F, Carrión VJ, Raaijmakers JM. Ecology and evolution of plant microbiomes. Annual Review of Microbiology, 2019, 73:69-88.
    [15] Müller DB, Vogel C, Bai Y, Vorholt JA. The plant microbiota:systems-level insights and perspectives. Annual Review of Genetics, 2016, 50(1):211-234.
    [16] Vaishnav A, Shukla AK, Sharma A, Kumar R, Choudhary DK. Endophytic bacteria in plant salt stress tolerance:current and future prospects. Journal of Plant Growth Regulation, 2019, 38(2):650-668.
    [17] Yang R, Qin ZF, Wang JJ, Xu S, Zhao W, Zhang XX, Huang ZY. Salinity changes root occupancy by arbuscular mycorrhizal fungal species. Pedobiologia, 2020, 81/82:150665.
    [18] Micklin P. The past, present, and future Aral Sea. Lakes & Reservoirs:Research & Management, 2010, 15(3):193-213.
    [19] Micklin P. The Aral sea disaster. Annual Review of Earth and Planetary Sciences, 2007, 35(1):47-72.
    [20] Micklin PP. Desiccation of the Aral sea:a water management disaster in the soviet union. Science, 1988, 241(4870):1170-1176.
    [21] Gaybullaev B, Chen SC, Kuo YM. Large-scale desiccation of the Aral Sea due to over-exploitation after 1960. Journal of Mountain Science, 2012, 9(4):538-546.
    [22] Rafikov V, Gulnora M. Forecasting changes of hydrological and hydrochemical conditions in the Aral Sea. Geodesy and Geodynamics, 2014, 5(3):55-58.
    [23] Jiang HC, Huang JR, Li L, Huang LQ, Manzoor M, Yang J, Wu G, Sun XX, Wang BC, Egamberdieva D, Panosyan H, Birkeland NK, Zhu ZH, Li WJ. Onshore soil microbes and endophytes respond differently to geochemical and mineralogical changes in the Aral Sea. Science of the Total Environment, 2021, 765:142675.
    [24] Izhitskiy AS, Zavialov PO, Sapozhnikov PV, Kirillin GB, Grossart HP, Kalinina OY, Zalota AK, Goncharenko IV, Kurbaniyazov AK. Present state of the Aral Sea:diverging physical and biological characteristics of the residual basins. Scientific Reports, 2016, 6:23906.
    [25] Erdinger L, Eckl P, Ingel F, Khussainova S, Utegenova E, Mann V, Gabrio T. The Aral Sea disaster-human biomonitoring of Hg, As, HCB, DDE, and PCBs in children living in Aralsk and Akchi, Kazakhstan. International Journal of Hygiene and Environmental Health, 2004, 207(6):541-547.
    [26] Shurigin V, Hakobyan A, Panosyan H, Egamberdieva D, Davranov K, Birkeland NK. A glimpse of the prokaryotic diversity of the Large Aral Sea reveals novel extremophilic bacterial and archaeal groups. MicrobiologyOpen, 2019, 8(9):e00850.
    [27] Tang Y, Liu YC, Yang J, Jiang HC. Gene diversity involved in kalvin pathway of carbon fixation and its response to environmental variables in surface sediments of the northern Qinghai-Tibetan Plateau lakes. Earth Science, 2018, 43(S1):19-30. (in Chinese) 唐阳, 刘永超, 杨渐, 蒋宏忱. 青藏高原北部湖泊表层沉积物参与卡尔文循环的固碳基因多样性及其影响因素. 地球科学, 2018, 43(S1):19-30.
    [28] Zhang LL, Zhang HQ, Wang ZH, Chen GJ, Wang LS. Dynamic changes of the dominant functioning microbial community in the compost of a 90-m3 aerobic solid state fermentor revealed by integrated meta-omics. Bioresource Technology, 2016, 203:1-10.
    [29] Magoč T, Salzberg SL. FLASH:fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21):2957-2963.
    [30] Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011, 27(16):2194-2200.
    [31] Juniper S, Abbott LK. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza, 2006, 16(5):371-379.
    [32] Krishnamoorthy R, Kim K, Kim C, Sa TM. Changes of arbuscular mycorrhizal traits and community structure with respect to soil salinity in a coastal reclamation land. Soil Biology and Biochemistry, 2014, 72:1-10.
    [33] Zhao S, Liu JJ, Banerjee S, White JF, Zhou N, Zhao ZY, Zhang K, Hu MF, Kingsley K, Tian CY. Not by salinity alone:how environmental factors shape fungal communities in saline soils. Soil Science Society of America Journal, 2019, 83(5):1387-1398.
    [34] Kis-Papo T, Weig AR, Riley R, Peršoh D, Salamov A, Sun H, Lipzen A, Wasser SP, Rambold G, Grigoriev IV, Nevo E. Genomic adaptations of the halophilic Dead Sea filamentous fungus Eurotium rubrum. Nature Communications, 2014, 5:3745.
    [35] Peay KG, Baraloto C, Fine PVA. Strong coupling of plant and fungal community structure across western Amazonian rainforests. The ISME Journal, 2013, 7(9):1852-1861.
    [36] Zhang LQ, Zhang ZM, Zhang LM, Wang JT. Succession of soil fungal and bacterial communities in a typical chronosequence of abandoned agricultural lands. Acta Ecologica Sinica, 2019, 39(8):2715-2722. (in Chinese) 张露琪, 张志明, 张丽梅, 王军涛. 典型农田退耕后土壤真菌与细菌群落的演替. 生态学报, 2019, 39(8):2715-2722.
    [37] Liang Y, Gao YB. Effects of endophyte infection on growth, development and stress resistance of plants. Chinese Bulletin of Botany, 2000, 35(1):52-59. (in Chinese) 梁宇, 高玉葆. 内生真菌对植物生长发育及抗逆性的影响. 植物学通报, 2000, 35(1):52-59.
    [38] Rodriguez RJ, White Jr JF, Arnold AE, Redman RS. Fungal endophytes:diversity and functional roles. New Phytologist, 2009, 182(2):314-330.
    [39] Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS. Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal, 2008, 2(4):404-416.
    [40] 王洹. 西南地区水生植物内生真菌及其底泥真菌多样性研究. 云南大学硕士学位论文, 2017.
    [41] Ji YL, Sun XH, Wang ZW. A survey of the gramineous plant endophytes in Huangshan Geopark. Journal of Nanjing Agricultural University, 2011, 34(1):147-150. (in Chinese) 纪燕玲, 孙相辉, 王志伟. 禾本科植物内生真菌研究11:黄山景区禾本科植物内生真菌的检测与分布. 南京农业大学学报, 2011, 34(1):147-150.
    [42] Zak DR, Holmes WE, White DC, Peacock AD, Tilman D. Plant diversity, soil microbial communities, and ecosystem function:are there any links? Ecology, 2003, 84(8):2042-2050.
    [43] Waldrop MP, Zak DR, Blackwood CB, Curtis CD, Tilman D. Resource availability controls fungal diversity across a plant diversity gradient. Ecology Letters, 2006, 9(10):1127-1135.
    [44] Yang J, Jiang HC, Sun XX, Chen JS, Xie ZL, Dong HL. Minerals play key roles in driving prokaryotic and fungal communities in the surface sediments of the Qinghai-Tibetan lakes. FEMS Microbiology Ecology, 2020, 96(4):fiaa035.
    [45] Dong HL. Mineral-microbe interactions:a review. Frontiers of Earth Science in China, 2010, 4(2):127-147.
    [46] Ding GC, Pronk GJ, Babin D, Heuer H, Heister K, Kögel-Knabner I, Smalla K. Mineral composition and charcoal determine the bacterial community structure in artificial soils. FEMS Microbiology Ecology, 2013, 86(1):15-25.
    [47] Mitchell AC, Lafrenière MJ, Skidmore ML, Boyd ES. Influence of bedrock mineral composition on microbial diversity in a subglacial environment. Geology, 2013, 41(8):855-858.
    [48] Assouline S, Russo D, Silber A, Or D. Balancing water scarcity and quality for sustainable irrigated agriculture. Water Resources Research, 2015, 51(5):3419-3436.
    [49] Vanegas J, Muñoz-García A, Pérez-Parra KA, Figueroa-Galvis I, Mestanza O, Polanía J. Effect of salinity on fungal diversity in the rhizosphere of the halophyte Avicennia germinans from a semi-arid mangrove. Fungal Ecology, 2019, 42:100855.
    [50] Liu JJ, Sui YY, Yu ZH, Shi Y, Chu HY, Jin J, Liu XB, Wang GH. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biology and Biochemistry, 2015, 83:29-39.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄建蓉,高磊,李丽,李文均,蒋宏忱. 咸海湖泊退缩对岸边土壤真菌和植物内生真菌的影响研究[J]. 微生物学报, 2021, 61(6): 1681-1697

复制
分享
文章指标
  • 点击次数:355
  • 下载次数: 1126
  • HTML阅读次数: 1401
  • 引用次数: 0
历史
  • 收稿日期:2020-11-17
  • 最后修改日期:2021-01-02
  • 在线发布日期: 2021-06-05
文章二维码