水热增加下黑土细菌群落共生网络特征
作者:
基金项目:

国家自然科学基金(41877060)


Co-occurrence network of bacterial communities in mollisol soils under increasing hydrothermal conditions
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    黑土是有机质含量高且肥沃的土壤类型之一,气候变化会显著改变黑土中微生物群落的结构,同时影响群落间的潜在相互作用关系。[目的] 揭示水热增加对黑土中的细菌群落结构及潜在互作关系的影响。[方法] 基于土壤移置试验,采用16S rRNA高通量测序解析农田黑土(原位黑土、水热增加1和水热增加2)中的细菌群落结构对水热增加的响应;使用CoNet构建微生物群落共生网络,识别共生网络中的枢纽微生物;利用结构方程模型、相关性分析探究水热条件变化下土壤性质、微生物交互作用、多样性之间的直接、间接关系。[结果] 黑土中的微生物以疣微菌、变形杆菌、酸性杆菌和放线菌为主。水热增加下土壤微生物共生网络的拓扑性质发生显著变化,网络中表征微生物潜在竞争关系的负连线随着水热增加而显著增加。气候因素通过改变微生物潜在相互作用影响了群落水平分类多样性。物种竞争增强可能直接导致了土壤有机碳含量的降低。[结论] 水热增加会显著改变黑土中微生物之间的潜在交互作用,枢纽微生物的响应更加敏感。

    Abstract:

    Mollisol soil is one of the soil types with high content of organic matter and fertility, climate change will significantly change the structure and potential interactions of mollisol soils microbial communities. [Objective] This study is aimed to explore the microbial community structure and succession characteristics of mollisol soils under increasing hydrothermal conditions. [Methods] Based on a soil transplantation expriment, 16S rRNA high-throughput sequencing was used to analyze the bacterial community structure of mollisol soils (in-situ, warming1 and warming2); CoNet was used to construct the microbial co-occurrence networks and identify the hub microbes, structural equation models and correlation analysis were used to explore the direct and indirect relationships between soil properties, microbial co-occurrence networks, and diversity under the increasing precipitation and temperature conditions. [Results] We found that mollisol soils were dominated by Verrucomicrobia, Proteobacteria, Acidobacteria, and Actinobacteria. Soil transplantation simulating climate change altered the patterns of microbial co-occurrence network with increased negative edge percentage and different network sizes. Climatic factors affected the taxonomic diversity directly and indirectly from altering the microbial interactions. The strengthen of negative interactions in communities directly induced the loss of soil organic carbon. [Conclusion] The increasing hydrothermal conditions will significantly change the microbial community co-occurrence network of mollisol soils, and the response of network hub microbes will be more sensitive.

    参考文献
    [1] Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH:Ecological linkages between aboveground and belowground biota. Science, 2004, 304(5677):1629-1633.
    [2] Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ et al:Essay-The role of ecological theory in microbial ecology. Nature Reviews Microbiology, 2007, 5(5):384-392.
    [3] Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA:Bacterial diversity promotes community stability and functional resilience after perturbation. Environmental Microbiology, 2005, 7(3):301-313.
    [4] Pan G, Smith P, Pan W:The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture Ecosystems & Environment, 2009, 129(1-3):344-348.
    [5] Sulman BN, Phillips RP, Oishi AC, Shevliakova E, Pacala SW:Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nature Climate Change, 2014, 4(12):1099-1102.
    [6] Schlesinger WH, Andrews JA:Soil respiration and the global carbon cycle. Biogeochemistry 2000, 48(1):7-20.
    [7] Davidson EA, Janssens IA:Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440(7081):165-173.
    [8] Tardy V, Spor A, Mathieu O, Leveque J, Terrat S, Plassart P, Regnier T, Bardgett RD, van der Putten WH, Roggero PP et al:Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biology & Biochemistry, 2015, 90:204-213.
    [9] Creamer RE, Hannula SE, Van Leeuwen JP, Stone D, Rutgers M, Schmelz RM, de Ruiter PC, Hendriksen NB, Bolger T, Bouffaud ML et al:Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Applied Soil Ecology, 2016, 97:112-124.
    [10] Alexander JM, Diez JM, Levine JM. Novel competitors shape species' responses to climate change. Nature, 2015, 525(7570):515-518
    [11] Tylianakis JM, Didham RK, Bascompte J, Wardle DA:Global change and species interactions in terrestrial ecosystems. Ecology Letters, 2008, 11(12):1351-1363.
    [12] Leathwick JR, Austin MP:Competitive interactions between tree species in New Zealand's old-growth indigenous forests. Ecology, 2001, 82(9):2560-2573.
    [13] 鲁如坤. 土壤农业化学分析方法. 北京:中国农业科技出版社, 2000.
    [14] Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology, 2016, 14(1):e1002352. DOI:10.1371/journal.pbio.1002352.
    [15] Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD:A framework for community interactions under climate change. Trends in Ecology & Evolution, 2010, 25(6):325-331.
    [16] GF G:The Struggle for Existence. Soil Science 1936, 41:159.
    [17] Barns SM, Cain EC, Sommerville L, Kuske CR:Acidobactetia phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Applied and Environmental Microbiology, 2007, 73(9):3113-3116.
    [18] Hautier Y, Niklaus PA, Hector A:Competition for Light Causes Plant Biodiversity Loss After Eutrophication. Science, 2009, 324(5927):636-638.
    [19] Soliveres S, Maestre FT, Ulrich W, Manning P, Boch S, Bowker MA, Prati D, Delgado-Baquerizo M, Quero JL, Schoening I et al:Intransitive competition is widespread in plant communities and maintains their species richness. Ecology Letters, 2015, 18(8):790-798.
    [20] Maynard DS, Bradford MA, Lindner DL, van Diepen LTA, Frey SD, Glaeser JA, Crowther TW:Diversity begets diversity in competition for space. Nature Ecology & Evolution, 2017, 1(6).
    [21] Higgins LM, Friedman J, Shen H, Gore J:Co-occurring soil bacteria exhibit a robust competitive hierarchy and lack of nontransitive interactions. BioRxiv, 2017:1-16.
    [22] Woodward G, Benstead JP, Beveridge OS, Blanchard J, Brey T, Brown LE, Cross WF, Friberg N, Ings TC, Jacob U, Jennings S, Ledger ME, Milner AM, Montoya JM, O'Gorman E, Olesen JM, Petchey OL, Pichler DE, Reuman DC, Thompson MSA, van Veen FJF, Yvon-Durocher G. Ecological networks in a changing climate. Advances in Ecological Research. Amsterdam:Elsevier, 2010:71-138.
    [23] Shade A:Diversity is the question, not the answer. The ISME Journal, 2017, 11:1-6.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李东,肖娴,孙波,梁玉婷. 水热增加下黑土细菌群落共生网络特征[J]. 微生物学报, 2021, 61(6): 1715-1727

复制
分享
文章指标
  • 点击次数:462
  • 下载次数: 1272
  • HTML阅读次数: 1545
  • 引用次数: 0
历史
  • 收稿日期:2021-03-05
  • 最后修改日期:2021-04-13
  • 在线发布日期: 2021-06-05
文章二维码