铜绿假单胞菌锌离子摄取系统的研究进展
作者:
基金项目:

国家自然科学基金(31700031,31860012,32070103);陕西省教育厅重点实验室科研计划(17JS138);陕西省“特支计划”区域发展人才项目;陕西省普通高等学校青年杰出人才支持计划;延安大学博士科研启动项目(YDBK2016-01)


Zinc uptake systems in Pseudomonas aeruginosa
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    锌作为一种结构、催化和信号的成分,在许多生理过程中起着关键的作用。它也是病原微生物生长所必需的,不但参与病原微生物代谢和各种毒力因子的调控,而且是病原微生物在宿主中感染和定殖所必需的。铜绿假单胞菌侵染宿主发挥毒力时,宿主会采取营养免疫的策略来限制体内环境中游离的锌离子浓度而抑制该病原菌的感染和定殖。反过来,铜绿假单胞菌则通过自身的锌离子摄取系统克服宿主的营养免疫防御。本综述重点介绍了铜绿假单胞菌中已知的3种锌离子摄取系统(ZnuABC摄取系统、HmtA摄取系统和CntRLMN摄取系统)和锌摄取调控蛋白Zur,同时分析了其他潜在的锌离子摄取途径,并进一步阐述了铜绿假单胞菌锌离子摄取系统在其侵染宿主发挥毒力时和抵御宿主营养免疫时发挥的重要作用。系统总结铜绿假单胞菌对锌离子的摄取过程,旨在为靶向锌离子摄取系统的新型抗铜绿假单胞菌药物的开发提供指导。

    Abstract:

    As a structural, catalytic, and regulatory component, zinc plays a key role in many cellular processes. It is also necessary for the growth of pathogenic microorganisms. It is not only involved in microbial pathogen metabolism and various virulence play, but also necessary for microbial pathogen infection and colonization in the host. When Pseudomonas aeruginosa infects the host to exert its virulence, the host will adopt the strategy of nutritional immunity to limit the concentration of free zinc ions in the internal environment and inhibit the infection and colonization of the pathogen. On the contrary, P. aeruginosa overcomes the host's nutritional immune defenses through its own zinc uptake systems. This review focuses on the three known zinc uptake systems (ZnuABC, HmtA and CntRLMN) and zinc uptake regulator (Zur) in P. aeruginosa, and further analyzes other potential zinc uptake pathways. The important roles of P. aeruginosa zinc uptake systems in host virulence and nutritional immune defense are also discussed. A systematic summary of the P. aeruginosa zinc uptake pathways is aimed at providing guidance for the development of new anti-P. aeruginosa drugs targeted zinc uptake systems.

    参考文献
    [1] Coverdale JPC, Khazaipoul S, Arya S, Stewart AJ, Blindauer CA. Crosstalk between zinc and free fatty acids in plasma. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2019, 1864(4):532-542.
    [2] Faulkner MJ, Helmann JD. Peroxide stress elicits adaptive changes in bacterial metal ion homeostasis. Antioxidants & Redox Signaling, 2011, 15(1):175-189.
    [3] Pederick VG, Eijkelkamp BA, Begg SL, Ween MP, McAllister LJ, Paton JC, Mcdevitt CA. ZnuA and zinc homeostasis in Pseudomonas aeruginosa. Scientific Reports, 2015, 5(1):13139.
    [4] Escobedo Monge MF, Barrado E, Alonso Vicente C, Redondo del Río MP, Marugán de Miguelsanz JM. Zinc nutritional status in patients with cystic fibrosis. Nutrients, 2019, 11(1):150.
    [5] Ohashi W, Fukada T. Contribution of zinc and zinc transporters in the pathogenesis of inflammatory bowel diseases. Journal of Immunology Research, 2019, 2019:8396878.
    [6] Foster AW, Osman D, Robinson NJ. Metal preferences and metallation. Journal of Biological Chemistry, 2014, 289(41):28095-28103.
    [7] Kehl-Fie TE, Skaar EP. Nutritional immunity beyond iron:a role for manganese and zinc. Current Opinion in Chemical Biology, 2010, 14(2):218-224.
    [8] Gonzalez MR, Ducret V, Leoni S, Perron K. Pseudomonas aeruginosa zinc homeostasis:key issues for an opportunistic pathogen. Biochimica Et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2019, 1862(7):722-733.
    [9] Chandrangsu P, Rensing C, Helmann JD. Metal homeostasis and resistance in bacteria. Nature Reviews Microbiology, 2017, 15(6):338-350.
    [10] Huszczynski SM, Lam JS, Khursigara CM. The role of Pseudomonas aeruginosa lipopolysaccharide in bacterial pathogenesis and physiology. Pathogens, 2020, 9(1):6.
    [11] Palmer LD, Skaar EP. Transition metals and virulence in bacteria. Annual Review of Genetics, 2016, 50:67-91.
    [12] Luo RX, Liu MF. The mechanism of zinc uptake in Gram-negative bacteria and strategies for resisting host nutrition immunity. Chinese Journal of Biochemistry and Molecular Biology, 2019, 35(8):831-836. (in Chinese)罗睿心, 刘马峰. 革兰氏阴性菌锌摄取机制及抵抗宿主营养免疫的策略. 中国生物化学与分子生物学报, 2019, 35(8):831-836.
    [13] Calmettes C, Ing C, Buckwalter CM, El Bakkouri M, Chieh-Lin Lai C, Pogoutse A, Gray-Owen SD, Pomès R, Moraes TF. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD. Nature Communications, 2015, 6(1):7996.
    [14] Ellison ML, Farrow ⅢI JM, Parrish W, Danell AS, Pesci EC. The transcriptional regulator Np20 is the zinc uptake regulator in Pseudomonas aeruginosa. PLoS ONE, 2013, 8(9):e75389.
    [15] Lewinson O, Lee AT, Rees DC. A P-type ATPase importer that discriminates between essential and toxic transition metals. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(12):4677-4682.
    [16] Dao TT, Sehgal P, Tung TT, Møller JV, Nielsen J, Palmgren M, Christensen B, Fuglsang AT. Demethoxycurcumin is a potent inhibitor of P-type ATPases from diverse kingdoms of life. PLoS ONE, 2016, 11(9):e0163260.
    [17] Argüello JM. Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases. The Journal of Membrane Biology, 2003, 195(2):93-108.
    [18] Hood MI, Skaar EP. Nutritional immunity:transition metals at the pathogen-host interface. Nature Reviews Microbiology, 2012, 10(8):525-537.
    [19] Lin JS, Niu YT, Wang ST, Wang GF, Tian Y, Zhang H, Zhu XF, Si QP, Cheng JL, Ai YN, Zhao WJ, Zhang XQ. Characterization of zinc ion uptake mediated by cntRLMN operon in Pseudomonas aeruginosa. Acta Microbiologica Sinica, 2020, 60(4):789-804. (in Chinese)林金水, 牛艳婷, 王帅涛, 王贵锋, 田野, 张恒, 朱旭飞, 司青坡, 成娟丽, 艾亚楠, 赵文静, 张向前. 铜绿假单胞菌cntRLMN操纵子介导锌离子摄取的功能鉴定. 微生物学报, 2020, 60(4):789-804.
    [20] Mastropasqua MC, D'Orazio M, Cerasi M, Pacello F, Gismondi A, Canini A, Canuti L, Consalvo A, Ciavardelli D, Chirullo B, Pasquali P, Battistoni A. Growth of Pseudomonas aeruginosa in zinc poor environments is promoted by a nicotianamine-related metallophore. Molecular Microbiology, 2017, 106(4):543-561.
    [21] Lhospice S, Gomez NO, Ouerdane L, Brutesco C, Ghssein G, Hajjar C, Liratni A, Wang SL, Richaud P, Bleves S, Ball G, Borezée-Durant E, Lobinski R, Pignol D, Arnoux P, Voulhoux R. Pseudomonas aeruginosa zinc uptake in chelating environment is primarily mediated by the metallophore pseudopaline. Scientific Reports, 2017, 7(1):17132.
    [22] Ghssein G, Brutesco C, Ouerdane L, Fojcik C, Izaute A, Wang SL, Hajjar C, Lobinski R, Lemaire D, Richaud P, Voulhoux R, Espaillat A, Cava F, Pignol D, Borezée-Durant E, Arnoux P. Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus. Science, 2016, 352(6289):1105-1109.
    [23] Fillat MF. The FUR (ferric uptake regulator) superfamily:Diversity and versatility of key transcriptional regulators. Archives of Biochemistry and Biophysics, 2014, 546:41-52.
    [24] Shin JH, Jung HJ, An YJ, Cho YB, Cha SS, Roe JH. Graded expression of zinc-responsive genes through two regulatory zinc-binding sites in Zur. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(12):5045-5050.
    [25] Ulrich LE, Koonin EV, Zhulin IB. One-component systems dominate signal transduction in prokaryotes. Trends in Microbiology, 2005, 13(2):52-56.
    [26] Smith KF, Bibb LA, Schmitt MP, Oram DM. Regulation and activity of a zinc uptake regulator, Zur, in Corynebacterium diphtheriae. Journal of Bacteriology, 2009, 191(5):1595-1603.
    [27] Kandari D, Gopalani M, Gupta M, Joshi H, Bhatnagar S, Bhatnagar R. Identification, functional characterization, and regulon prediction of the zinc uptake regulator (zur) of Bacillus anthracis-An insight Into the zinc homeostasis of the pathogen. Frontiers in Microbiology, 2019, 9:3314.
    [28] Ducret V, Gonzalez MR, Leoni S, Valentini M, Perron K. The CzcCBA efflux system requires the CadA P-type ATPase for timely expression upon zinc excess in Pseudomonas aeruginosa. Frontiers in Microbiology, 2020, 11:911.
    [29] Blaby-Haas CE, Furman R, Rodionov DA, Artsimovitch I, de Crécy-Lagard V. Role of a Zn-independent DksA in Zn homeostasis and stringent response. Molecular Microbiology, 2011, 79(3):700-715.
    [30] Zackular JP, Knippel RJ, Lopez CA, Beavers WN, Maxwell CN, Chazin WJ, Skaar EP. ZupT facilitates Clostridioides difficile resistance to host-mediated nutritional immunity. mSphere, 2020, 5(2):e00061-20.
    [31] Kallifidas D, Pascoe B, Owen GA, Strain-Damerell CM, Hong H J, Paget MSB. The zinc-responsive regulator Zur controls expression of the coelibactin gene cluster in Streptomyces coelicolor. Journal of Bacteriology, 2010, 192(2):608-611.
    [32] Gi M, Lee KM, Kim SC, Yoon JH, Yoon SS, Choi> porins. FEMS Microbiology Reviews, 2017, 41(5):698-722.
    [51] Murphy JT, Bruinsma JJ, Schneider DL, Collier S, Guthrie J, Chinwalla A, Robertson JD, Mardis ER, Kornfeld K. Histidine protects against zinc and nickel toxicity in Caenorhabditis elegans. PLoS Genetics, 2011, 7(3):e1002013.
    [52] Nairn BL, Lonergan ZR, Wang J, Braymer JJ, Zhang YF, Calcutt MW, Lisher JP, Gilston BA, Chazin WJ, De Crécy-Lagard V, Giedroc DP, Skaar EP. The response of Acinetobacter baumannii to zinc starvation. Cell Host & Microbe, 2016, 19(6):826-836.
    [53] Capdevila DA, Wang JF, Giedroc DP. Bacterial strategies to maintain zinc metallostasis at the host-pathogen interface. Journal of Biological Chemistry, 2016, 291(40):20858-20868.
    [54] Lin JS, Cheng JL, Wang Y, Shen XH. The Pseudomonas quinolone signal (PQS):not just for quorum sensing anymore. Frontiers in Cellular and Infection Microbiology, 2018, 8:230.
    [55] Lin JS, Cheng JL. Quorum sensing in Pseudomonas aeruginosa and its relationship to biofilm development//Rathinam NK, Sani RK. Introduction to Biofilm Engineering. American Chemical Society, 2019:1-16.
    [56] D'Orazio M, Mastropasqua MC, Cerasi M, Pacello F, Consalvo A, Chirullo B, Mortensen B, Skaar EP, Ciavardelli D, Pasquali P, Battistoni A. The capability of Pseudomonas aeruginosa to recruit zinc under conditions of limited metal availability is affected by inactivation of the ZnuABC transporter. Metallomics, 2015, 7(6):1023-1035.
    [57] Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. Journal of Bacteriology, 2002, 184(23):6472-6480.
    [58] Dietrich LEP, Price-Whelan A, Petersen A, Whiteley M, Newman DK. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Molecular Microbiology, 2006, 61(5):1308-1321.
    [59] Correnti C, Strong RK. Mammalian siderophores, siderophore-binding lipocalins, and the labile iron pool. Journal of Biological Chemistry, 2012, 287(17):13524-13531.
    [60] Haase H, Rink L. Multiple impacts of zinc on immune function. Metallomics, 2014, 6(7):1175-1180.
    [61] Águeda-Pinto A, Castro LFC, Esteves PJ. The evolution of S100A7:An unusual gene expansion in Myotis bats. BMC Evolutionary Biology, 2019, 19(1):102.
    [62] DeShazer D. A novel contact-independent T6SS that maintains redox homeostasis via Zn2+ and Mn2+ acquisition is conserved in the Burkholderia pseudomallei complex. Microbiological Research, 2019, 226:48-54.
    [63] Bielecki P, Puchałka J, Wos-Oxley ML, Loessner H, Glik J, Kawecki M, Nowak M, Tümmler B, Weiss S, dos Santos VAPM. In-vivo expression profiling of Pseudomonas aeruginosa infections reveals niche-specific and strain-independent transcriptional programs. PLoS ONE, 2011, 6(9):e24235.
    [64] Battistoni A, Ammendola S, Chianco杮卥 E本映Il污穲敩 A縮茠镁礠孮豯捶佥籬丠慡杮ti彭畩牣孲扯bial approach based on the inhibition of zinc uptake in Salmonella enterica. Future Medicinal Chemistry, 2017, 9(9):899-910.ilitator superfamily. Scientific Reports, 2020, 10(1):3949.
    [47] Saier Jr MH, Paulsen IT. Phylogeny of multidrug transporters. Seminars in Cell & Developmental Biology, 2001, 12(3):205-213.
    [48] Guan L, Kaback HR. Lessons from lactose permease. Annual Review of Biophysics and Biomolecular Structure, 2006, 35:67-91.
    [49] Newstead S, Drew D, Cameron AD, Postis VLG, Xia XB, Fowler PW, Ingram JC, Carpenter EP, Sansom MSP, McPherson MJ, Baldwin SA, Iwata S. Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO Journal, 2010, 30(2):417-426.
    [50] Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MGJ, Orange N, Dufour A, Cornelis P. Structure, function and regulation of Pseudomonas aeruginosa
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

牛艳婷,王帅涛,成娟丽,林金水. 铜绿假单胞菌锌离子摄取系统的研究进展[J]. 微生物学报, 2021, 61(7): 1856-1872

复制
分享
文章指标
  • 点击次数:420
  • 下载次数: 1232
  • HTML阅读次数: 1478
  • 引用次数: 0
历史
  • 收稿日期:2020-08-06
  • 最后修改日期:2020-10-06
  • 在线发布日期: 2021-07-07
文章二维码