cGAS-STING信号通路:免疫监视的重要机制
作者:
基金项目:

国家自然科学基金(32072854,32072855)


cGAS-STING signaling pathway: important mechanisms of immune surveillance
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [68]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    免疫系统识别病原微生物的主要机制之一是识别其核酸。环磷酸鸟苷-腺苷合成酶(cGAS)是一种胞质DNA感受器,感知病原DNA后激活cGAS-STING通路。该通路不仅介导天然免疫应答以抵抗多种含DNA的病原微生物感染,还能感知肿瘤来源的DNA而产生抗肿瘤免疫应答。然而,自体DNA对cGAS-STING通路的异常激活也会导致自身免疫性和炎症性疾病。本文综述了cGAS-STING信号通路及其在抗病毒天然免疫中的调控作用与功能,阐述了cGAS-STING通路在抗病毒感染和疾病中发挥的作用。

    Abstract:

    The recognition of microbial nucleic acids is a major mechanism by which the immune system detects pathogenic microorganisms. Cyclic guanosine phosphate adenosine synthase is a cytoplasmic DNA sensor that activates the CGAS-STING pathway after sensing pathogenic DNA. The cGAS-STING pathway not only mediates innate immune response against infections by a large variety of DNA-containing pathogens, but also senses tumor-derived DNA to generate intrinsic antitumor immunity. However, aberrant activation of the cGAS-STING pathway by autologous DNA can also lead to autoimmune and inflammatory diseases. The paper reviews the cGAS-STING signaling pathway and its regulation and functions in antiviral innate immunity, and expounds the role of the cGAS-STING signaling pathway in defensing viral infections and diseases.

    参考文献
    [1] Pandey S, Kawai T, Akira S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harbor Perspectives in Biology, 2014, 7(1):a016246.
    [2] Broz P, Dixit VM. Inflammasomes:mechanism of assembly, regulation and signalling. Nature Reviews Immunology, 2016, 16(7):407-420.
    [3] Yoneyama M, Onomoto K, Jogi M, Akaboshi T, Fujita T. Viral RNA detection by RIG-I-like receptors. Current Opinion in Immunology, 2015(32):48-53.
    [4] Cai X, Chiu YH, Chen ZJ. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Molecular Cell, 2014, 54(2):289-296.
    [5] Knight M, Braverman J, Asfaha K, Gronert K, Stanley S. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense. PLoS Pathogens, 2018, 14(1):e1006874.
    [6] Sun LJ, Wu JX, Du FH, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 2013, 339(6121):786-791.
    [7] Zhang X, Wu JX, Du FH, Xu H, Sun LJ, Chen Z, Brautigam CA, Zhang XW, Chen ZJ. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Reports, 2014, 6(3):421-430.
    [8] Li X, Shu C, Yi GH, Chaton CT, Shelton CL, Diao JS, Zuo XB, Kao CC, Herr AB, Li PW. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity, 2013, 39(6):1019-1031.
    [9] Kranzusch PJ, Lee ASY, Berger JM, Doudna JA. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Reports, 2013, 3(5):1362-1368.
    [10] Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nature Reviews Genetics, 2019, 20(11):657-674.
    [11] Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G, Hornung V, Hopfner KP. Structural mechanism of cytosolic DNA sensing by cGAS. Nature, 2013, 498(7454):332-337.
    [12] Wu JX, Sun LJ, Chen X, Du FH, Shi HP, Chen C, Chen ZJ. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science, 2013, 339(6121):826-830.
    [13] Motwani M, Pesiridis S, Fitzgerald KA. DNA sensing by the cGAS-STING pathway in health and disease. Nature Reviews Genetics, 2019, 20(11):657-674.
    [14] Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature, 2009, 461(7265):788-792.
    [15] Dobbs N, Burnaevskiy N, Chen DD, Gonugunta VK, Alto NM, Yan N. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host & Microbe, 2015, 18(2):157-168.
    [16] Tanaka Y, Chen ZJ. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Science Signaling, 2012, 5(214):ra20.
    [17] Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T. IKK ε and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunology, 2003, 4(5):491-496.
    [18] Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin RT, Hiscott J. Triggering the interferon antiviral response through an IKK-related pathway. Science, 2003, 300(5622):1148-1151.
    [19] Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 2008, 455(7213):674-678.
    [20] Gehrke N, Mertens C, Zillinger T, Wenzel J, Bald T, Zahn S, Tüting T, Hartmann G, Barchet W. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity, 2013, 39(3):482-495.
    [21] Seo GJ, Yang A, Tan B, Kim S, Liang QM, Choi Y, Yuan WM, Feng PH, Park HS, Jung JU. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Reports, 2015, 13(2):440-449.
    [22] Xia PY, Ye BQ, Wang S, Zhu XX, Du Y, Xiong Z, Tian Y, Fan ZS. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nature Immunology, 2016, 17(4):369-378.
    [23] Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice CM. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature, 2011, 472(7344):481-485.
    [24] Ma F, Li B, Liu SY, Iyer SS, Yu YX, Wu AP, Cheng GH. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. The Journal of Immunology, 2015, 194(4):1545-1554.
    [25] Xia TL, Konno H, Ahn J, Barber GN. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Reports, 2016, 14(2):282-297.
    [26] Feng X, Liu DY, Li ZY, Bian JL. Bioactive modulators targeting STING adaptor in cGAS-STING pathway. Drug Discovery Today, 2020, 25(1):230-237.
    [27] Tsuchiya Y, Jounai N, Takeshita F, Ishii KJ, Mizuguchi K. Ligand-induced ordering of the C-terminal tail primes STING for phosphorylation by TBK1. EBioMedicine, 2016(9):87-96.
    [28] Liu SQ, Cai X, Wu JX, Cong Q, Chen X, Li T, Du FH, Ren JY, Wu YT, Grishin NV, Chen ZJ. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science, 2015, 347(6227):aaa2630.
    [29] Konno H, Konno K, Barber GN. Cyclic dinucleotides trigger ULK1(ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell, 2013, 155(3):688-698.
    [30] Zhang J, Hu MM, Wang YY, Shu HB. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. Journal of Biological Chemistry, 2012, 287(34):28646-28655.
    [31] Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T, Matsuura Y, Kawai T, Akira S. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity, 2010, 33(5):765-776.
    [32] Zhong B, Zhang L, Lei CQ, Li Y, Mao AP, Yang Y, Wang YY, Zhang XL, Shu HB. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity, 2009, 30(3):397-407.
    [33] Wang YM, Lian QS, Yang B, Yan SS, Zhou HY, He L, Lin GM, Lian ZX, Jiang ZF, Sun B. TRIM30α is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLoS Pathogens, 2015, 11(6):e1005012.
    [34] Mukai K, Konno H, Akiba T, Uemura T, Waguri S, Kobayashi T, Barber GN, Arai H, Taguchi T. Activation of STING requires palmitoylation at the Golgi. Nature Communications, 2016(7):11932.
    [35] Paludan SR, Bowie AG. Immune sensing of DNA. Immunity, 2013, 38(5):870-880.
    [36] Ishii KJ, Kawagoe T, Koyama S, Matsui K, Kumar H, Kawai T, Uematsu S, Takeuchi O, Takeshita F, Coban C, Akira S. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature, 2008, 451(7179):725-729.
    [37] Gray EE, Winship D, Snyder JM, Child SJ, Geballe AP, Stetson DB. The AIM2-like receptors are dispensable for the interferon response to intracellular DNA. Immunity, 2016, 45(2):255-266.
    [38] Liang QM, Seo GJ, Choi YJ, Kwak MJ, Ge JN, Rodgers MA, Shi MD, Leslie BJ, Hopfner KP, Ha T, Oh BH, Jung JU. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host & Microbe, 2014, 15(2):228-238.
    [39] Paijo J, Döring M, Spanier J, Grabski E, Nooruzzaman M, Schmidt T, Witte G, Messerle M, Hornung V, Kaever V, Kalinke U. cGAS senses human cytomegalovirus and induces type I interferon responses in human monocyte-derived cells. PLoS Pathogens, 2016, 12(4):e1005546.
    [40] Lio CWJ, McDonald B, Takahashi M, Dhanwani R, Sharma N, Huang J, Pham E, Benedict CA, Sharma S. cGAS-STING signaling regulates initial innate control of cytomegalovirus infection. Journal of Virology, 2016, 90(17):7789-7797.
    [41] Zhang GG, Chan BC, Samarina N, Abere B, Weidner-Glunde M, Buch A, Pich A, Brinkmann MM, Schulz TF. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(8):E1034-E1043.
    [42] Wu JJ, Li WW, Shao YM, Avey D, Fu BS, Gillen J, Hand T, Ma SM, Liu X, Miley W, Konrad A, Neipel F, Stürzl M, Whitby D, Li H, Zhu FX. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host & Microbe, 2015, 18(3):333-344.
    [43] Ma Z, Jacobs SR, West JA, Stopford C, Zhang ZG, Davis Z, Barber GN, Glaunsinger BA, Dittmer DP, Damania B. Modulation of the cGAS-STING DNA sensing pathway by γ-herpesviruses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(31):E4306-E4315.
    [44] Li XD, Wu JX, Gao DX, Wang H, Sun LJ, Chen ZJ. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science, 2013, 341(6152):1390-1394.
    [45] Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, Mar KB, Richardson RB, Ratushny AV, Litvak V, Dabelic R, Manicassamy B, Aitchison JD, Aderem A, Elliott RM, García-Sastre A, Racaniello V, Snijder EJ, Yokoyama WM, Diamond MS, Virgin HW, Rice CM. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature, 2014, 505(7485):691-695.
    [46] Portnoy DA, Auerbuch V, Glomski IJ. The cell biology of Listeria monocytogenes infection:the intersection of bacterial pathogenesis and cell-mediated immunity. Journal of Cell Biology, 2002, 158(3):409-414.
    [47] Holm CK, Jensen SB, Jakobsen MR, Cheshenko N, Horan KA, Moeller HB, Gonzalez-Dosal R, Rasmussen SB, Christensen MH, Yarovinsky TO, Rixon FJ, Herold BC, Fitzgerald KA, Paludan SR. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nature Immunology, 2012, 13(8):737-743.
    [48] Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C, Hilditch L, Jacques DA, Selwood DL, James LC, Noursadeghi M, Towers GJ. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature, 2013, 503(7476):402-405.
    [49] Lahaye X, Satoh T, Gentili M, Cerboni S, Conrad C, Hurbain I, El Marjou A, Lacabaratz C, Lelièvre JD, Manel N. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity, 2013, 39(6):1132-1142.
    [50] Gao DX, Wu JX, Wu YT, Du FH, Aroh C, Yan N, Sun LJ, Chen ZJ. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science, 2013, 341(6148):903-906.
    [51] Sun CL, Schattgen SA, Pisitkun P, Jorgensen JP, Hilterbrand AT, Wang LJ, West JA, Hansen K, Horan KA, Jakobsen MR, O'Hare P, Adler H, Sun R, Ploegh HL, Damania B, Upton JW, Fitzgerald KA, Paludan SR. Evasion of innate cytosolic DNA sensing by a gammaherpesvirus facilitates establishment of latent infection. The Journal of Immunology, 2015, 194(4):1819-1831.
    [52] Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ, Olivas J, Vance RE, Stallings CL, Virgin HW, Cox JS. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host & Microbe, 2015, 17(6):811-819.
    [53] Wassermann R, Gulen MF, Sala C, Perin SG, Lou Y, Rybniker J, Schmid-Burgk JL, Schmidt T, Hornung V, Cole ST, Ablasser A. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host & Microbe, 2015, 17(6):799-810.
    [54] Collins AC, Cai HC, Li T, Franco LH, Li XD, Nair VR, Scharn CR, Stamm CE, Levine B, Chen ZJ, Shiloh MU. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host & Microbe, 2015, 17(6):820-828.
    [55] Hansen K, Prabakaran T, Laustsen A, Jørgensen SE, Rahbæk SH, Jensen SB, Nielsen R, Leber JH, Decker T, Horan KA, Jakobsen MR, Paludan SR. Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway. The EMBO Journal, 2014, 33(15):1654-1666.
    [56] Storek KM, Gertsvolf NA, Ohlson MB, Monack DM. cGAS and IfI204 cooperate to produce type I IFNs in response to Francisella infection. The Journal of Immunology, 2015, 194(7):3236-3245.
    [57] Zhang YG, Yeruva L, Marinov A, Prantner D, Wyrick PB, Lupashin V, Nagarajan UM. The DNA sensor, cyclic GMP-AMP synthase, is essential for induction of IFN-β during Chlamydia trachomatis infection. The Journal of Immunology, 2014, 193(5):2394-2404.
    [58] Andrade WA, Agarwal S, Mo SY, Shaffer SA, Dillard JP, Schmidt T, Hornung V, Fitzgerald KA, Kurt-Jones EA, Golenbock DT. Type I interferon induction by Neisseria gonorrhoeae:dual requirement of cyclic GMP-AMP synthase and Toll-like receptor 4. Cell Reports, 2016, 15(11):2438-2448.
    [59] Stempel M, Chan BC, Juranić Lisnić V, Krmpotić A, Hartung J, Paludan SR, Füllbrunn N, Lemmermann NA, Brinkmann MM. The herpesviral antagonist m152 reveals differential activation of STING-dependent IRF and NF-κB signaling and STING's dual role during MCMV infection. The EMBO Journal, 2019, 38(5):e100983.
    [60] Liu YH, Li JH, Chen JL, Li YM, Wang WX, Du XT, Song WH, Zhang W, Lin L, Yuan ZH. Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways. Journal of Virology, 2015, 89(4):2287-2300.
    [61] Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature, 2009, 461(7265):788-792.
    [62] Nitta S, Sakamoto N, Nakagawa M, Kakinuma S, Mishima K, Kusano-Kitazume A, Kiyohashi K, Murakawa M, Nishimura-Sakurai Y, Azuma S, Tasaka-Fujita M, Asahina Y, Yoneyama M, Fujita T, Watanabe M. Hepatitis C virus NS4B protein targets STING and abrogates RIG-I-mediated type I interferon-dependent innate immunity. Hepatology, 2013, 57(1):46-58.
    [63] Aguirre S, Maestre AM, Pagni S, Patel JR, Savage T, Gutman D, Maringer K, Bernal-Rubio D, Shabman RS, Simon V, Rodriguez-Madoz JR, Mulder LCF, Barber GN, Fernandez-Sesma A. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathogens, 2012, 8(10):e1002934.
    [64] Sun L, Xing YL, Chen XJ, Zheng Y, Yang YD, Nichols DB, Clementz MA, Banach BS, Li K, Baker SC, Chen ZB. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS ONE, 2012, 7(2):e30802.
    [65] Xing YL, Chen JF, Tu J, Zhang BL, Chen XJ, Shi HY, Baker SC, Feng L, Chen ZB. The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase. Journal of General Virology, 2013, 94(Pt 7):1554-1567.
    [66] Christensen MH, Jensen SB, Miettinen JJ, Luecke S, Prabakaran T, Reinert LS, Mettenleiter T, Chen ZJ, Knipe DM, Sandri-Goldin RM, Enquist LW, Hartmann R, Mogensen TH, Rice SA, Nyman TA, Matikainen S, Paludan SR. HSV-1 ICP27 targets the TBK1-activated STING signalsome to inhibit virus-induced type I IFN expression. The EMBO Journal, 2016, 35(13):1385-1399.
    [67] Lau L, Gray EE, Brunette RL, Stetson DB. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science, 2015, 350(6260):568-571.
    [68] Clementz MA, Chen ZB, Banach BS, Wang YH, Sun L, Ratia K, Baez-Santos YM, Wang J, Takayama J, Ghosh AK, Li K, Mesecar AD, Baker SC. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. Journal of Virology, 2010, 84(9):4619-4629.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周萍萍,王涛,孙元,仇华吉. cGAS-STING信号通路:免疫监视的重要机制[J]. 微生物学报, 2021, 61(7): 1882-1895

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-13
  • 最后修改日期:2020-11-10
  • 在线发布日期: 2021-07-07
文章二维码