基于基因组序列的脑膜炎奈瑟菌分型方法
作者:
基金项目:

深圳市“医疗卫生三名工程”引进高层次医学团队项目(SZSM201803081);南山区卫健局病原生物学、传染病防控医学重点学科建设资助


Whole genome sequence-based typing methods for Neisseria meningitidis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    [目的] 建立并评估1种适宜的脑膜炎奈瑟菌(Neisseria meningitidis,Nm)基因组分子分型方法。[方法] 本研究以125株代表性Nm菌株的基因组序列为对象,建立了基于核心基因SNP的基因组分型方法,并与pubMLST网站公布的MLST和cgMLST分型方法进行比较。[结果] 基于核心基因SNP的基因组分型方法和cgMLST方法对125株Nm菌株的分型结果一致性较高,两种方法均明显优于MLST分型方法。基于SNP的基因组分型方法在认识Nm菌的种群结构、界定克隆群方面具有优势;cgMLST分型方法能够对任一菌株进行分型,但不能进行克隆群的界定和归类。[结论] 基于核心基因SNP的基因组分型方法和cgMLST均明显优于MLST分型方法,未来仍有待进一步整合和提高。

    Abstract:

    [Objective] To find a suitable molecular typing method for Neisseria meningitides. [Methods] We used 125 presentative N. meningitidis strains to develop a new typing method, named core genome single nucleotide polymorphism (SNP) typing, based on the whole genome sequencing. This method was compared to the MLST and cgMLST typing that have been published on pubMLST website. [Results] The genotyping results of 125 N. meningitides strains isolates were consistent between the core genome SNP typing and egMLST, both of which are significantly better than MLST. The core genome SNP typing identified the population structure and defined the clonal complexes. Comparatively, cgMLST could type any strain but cannot define or assign its clonal complex. [Conclusion] Core genome SNP typing showed consistent results with cgMLST and both methods are significantly better than MLST.

    参考文献
    [1] Harrison LH, Pelton SI, Wilder-Smith A, Holst J, Safadi MAP, Vazquez JA, Taha MK, LaForce FM, von Gottberg A, Borrow R, Plotkin SA. The global meningococcal initiative:recommendations for reducing the global burden of meningococcal disease. Vaccine, 2011, 29(18):3363-3371.
    [2] Abio A, Neal KR, Beck CR. An epidemiological review of changes in meningococcal biology during the last 100 years. Pathogens and Global Health, 2013, 107(7):373-380.
    [3] Li JH, Li YX, Shao ZJ, Li L, Yin ZD, Ning GJ, Xu L, Luo HM. Prevalence of meningococcal meningitis in China from 2005 to 2010. Vaccine, 2015, 33(8):1092-1097.
    [4] Harrison LH, Trotter CL, Ramsay ME. Global epidemiology of meningococcal disease. Vaccine, 2009, 27 Suppl 2:B51-B63.
    [5] Caugant DA, Kristiansen PA, Wang X, Mayer LW, Taha MK, Ouédraogo R, Kandolo D, Bougoudogo F, Sow S, Bonte L. Molecular characterization of invasive meningococcal isolates from countries in the African meningitis belt before introduction of a serogroup A conjugate vaccine. PLoS ONE, 2012, 7(9):e46019.
    [6] Achtman M. Microevolution and epidemic spread of serogroup a Neisseria meningitidis-a review. Gene, 1997, 192(1):135-140.
    [7] Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou JJ, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt B G. Multilocus sequence typing:a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Science of the United States of America, 1998, 95(6):3140-3145.
    [8] Shao ZJ, Li W, Ren J, Liang XF, Xu L, Diao BW, Li MC, Lu MJ, Ren HY, Cui ZG, Zhu BQ, Dai ZW, Zhang L, Chen X, Kan B, Xu JG. Identification of a new Neisseria meningitidis serogroup C clone from Anhui province, China. The Lancet, 2006, 367(9508):419-423.
    [9] Law DKS, Lorange M, Ringuette L, Dion R, Giguère M, Henderson AM, Stoltz J, Zollinger WD, De Wals P, Tsang RSW. Invasive meningococcal disease in Quebec, Canada, due to an emerging clone of ST-269 serogroup B meningococci with serotype antigen 17 and serosubtype antigen P1.19(B:17:P1.19). Journal of Clinical Microbiology, 2006, 44(8):2743-2749.
    [10] Lucidarme J, Hill DMC, Bratcher HB, Gray SJ, du Plessis M, Tsang RSM, Vazquez JA, Taha MK, Ceyhan M, Efron AM, Gorla MC, Findlow J, Jolley KA, Maiden MCJ, Borrow R. Genomic resolution of an aggressive, widespread, diverse and expanding meningococcal serogroup B, C and W lineage. Journal of Infection, 2015, 71(5):544-552.
    [11] Zhu BQ, Lucidarme J, Bai XL, Guo PB, Zhang AY, Borrow R, Gao WY, Xu L, Gao Y, Shao ZJ. Comparative genomic analyses of Chinese serogroup W ST-11 complex Neisseria meningitidis isolates. Journal of Infection, 2020, 80(1):54-60.
    [12] Chen C, Zhang W, Zheng H, Lan RT, Wang HY, Du PC, Bai XM, Ji SB, Meng Q, Jin D, Liu K, Jing HQ, Ye CY, Gao GF, Wang L, Gottschalk M, Xu JG. Minimum core genome sequence typing of bacterial pathogens:a unified approach for clinical and public health microbiology. Journal of Clinical Microbiology, 2013, 51(8):2582-2591.
    [13] Meijs AP, Hengeveld PD, Dierikx CM, Maassen CBM, de Greeff SC, de Haan A, Bosch T, van Duijkeren E. Prolonged carriage of (livestock-associated) MRSA in individuals without professional livestock contact. Journal of Antimicrobial Chemotherapy, 2020, 75(6):1405-1409.
    [14] Li RQ, Li YR, Fang XD, Yang HM, Wang J, Kristiansen K, Wang J. SNP detection for massively parallel whole-genome resequencing. Genome Research, 2009, 19(6):1124-1132.
    [15] Luo RB, Liu BH, Xie YL, Huang WH, Yuan JY, He GZ, Chen YX, Pan Q, Liu YJ, Tang JB, Wu GX, Zhang H, Shi YJ, Liu Y, Yu C, Wang B, Lu Y, Han CL, Cheung DW, Yiu SM, Peng SL, Zhu XQ, Liu GM, Liao XK, Li YR, Yang HM, Wang J, Lam TW. SOAPdenovo2:an empirically improved memory-efficient short-read de novo assembler. GigaScience, 2012, 1(1):18.
    [16] Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics, 2007, 23(6):673-679.
    [17] Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. Versatile and open software for comparing large genomes. Genome Biology, 2004, 5(2):R12.
    [18] Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2):945-959.
    [19] Earl DA, Vonholdt BM. STRUCTURE HARVESTER:a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 2012, 4(2):359-361.
    [20] Jakobsson M, Rosenberg NA. CLUMPP:a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 2007, 23(14):1801-1806.
    [21] Zhou HJ, Liu WB, Qin T, Liu C, Ren HY. Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Klebsiella pneumoniae. Front Microbiology, 2017(8):371.
    [22] Kan B, Zhou HJ, Du PC, Zhang W, Lu X, Qin T, Xu JG. Transforming bacterial disease surveillance and investigation using whole-genome sequence to probe the trace. Frontiers of Medicine, 2018, 12(1):23-33.
    [23] Zhu B, Xu Z, Du P, Xu L, Sun X, Gao Y, Shao Z. Sequence type 4821 clonal complex serogroup B Neisseria meningitidis in China, 1978-2013. Emerging Infectious Diseases, 2015, 21(6):925-932.
    [24] Guo PB, Zhu BQ, Liang H, Gao WY, Zhou GL, Xu L, Gao Y, Yu JX, Zhang MJ, Shao ZJ. Comparison of pathogenicity of invasive and carried meningococcal isolates of ST-4821 complex in China. Infection and Immunity, 2019, 87(12):e00584-19.
    [25] Kristiansen PA, Diomandé F, Wei SC, Ouédraogo R, Sangaré L, Sanou I, Kandolo D, Kaboré P, Clark TA, Ouédraogo AS, Absatou KB, Ouédraogo CD, Hassan-King M, Thomas JD, Hatcher C, Djingarey M, Messonnier N, Préziosi MP, LaForce M, Caugant DA. Baseline meningococcal carriage in Burkina Faso before the introduction of a meningococcal serogroup A conjugate vaccine. Clinical and Vaccine Immunology, 2011, 18(3):435-443.
    [26] Cui YJ, Yang XW, Didelot X, Guo CY, Li DF, Yan YF, Zhang YQ, Yuan YT, Yang HM, Wang J, Wang J, Song YJ, Zhou DS, Falush D, Yang R. Epidemic clones, oceanic gene pools, and eco-ld in the free living marine pathogen Vibrio parahaemolyticus. Molecular Biology and Evolution, 2015, 32(6):1396-1410.
    相似文献
    引证文献
引用本文

袁梦,张雯,胡鹏威,俞慕华,陈辉,徐丽,高源,朱兵清,段永翔,邵祝军. 基于基因组序列的脑膜炎奈瑟菌分型方法[J]. 微生物学报, 2021, 61(7): 1910-1919

复制
相关视频

分享
文章指标
  • 点击次数:447
  • 下载次数: 1275
  • HTML阅读次数: 3753
  • 引用次数: 0
历史
  • 收稿日期:2020-06-09
  • 最后修改日期:2020-09-02
  • 在线发布日期: 2021-07-07
文章二维码