基于内源III-B型CRISPR-Cas系统构建超嗜热火球菌Pyrococcus yayanosii A1的基因敲降系统
作者:
基金项目:

国家自然科学基金(41676121,41976085)


An endogenous type III-B CRISPR-Cas based gene knockdown system in Pyrococcus yayanosii A1
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    [目的] 亚氏火球菌(Pyrococcus yayanosii) A1菌株的最适生长温度为98℃,最适生长压力为5.2×104 Pa,是研究此类严格厌氧、超嗜热和兼性嗜压古菌的环境适应性机制的良好材料。本研究基于P.yayanosii A1基因组中Ⅲ-B型CRISPR-Cas系统,旨在建立可应用于此类古菌的基因表达敲降系统(gene knock-down system)。[方法] 人工构建的mini-CRISPR簇,由内源性CRISPR簇Group 1的重复序列(repeats)和待敲降的淀粉酶基因(PYCH_13690)中的原间隔序列(protospacer)组成。将该mini-CRISPR簇插入到具有辛伐他汀抗性的穿梭载体pLMOShhp中,使之转录与目的基因mRNA匹配的crRNA,引导Cmr复合物对其进行切割。[结果] 使用高静水压(HHP)诱导型启动子Phhp诱导mini-CRISPR簇表达时,淀粉酶基因的mRNA数量在5.2×104 Pa静水压时下调到原来的67.05%,在1.0×102 Pa静水压时下调为原来的49.69%;而使用组成型启动子Phmtb诱导mini-CRISPR簇表达时,淀粉酶基因的mRNA数量在5.2×104 Pa静水压时下调为原来的58.48%,在1.0×102 Pa静水压时下调为原来的23.97%。使用鲁戈氏碘液显色法对这两类基因表达敲降突变菌株的培养物中残留的淀粉含量进行分析,结果显示突变菌株的淀粉降解能力明显降低。[结论] 在P.yayanosii A1中建立了基于内源Ⅲ-B型CRISPR-Cas系统的基因敲降系统,可以用于抑制此类超嗜热嗜压古菌体内基因的表达。

    Abstract:

    [Objective] Pyrococcus yayanosii A1, with its optimum growth condition at 98℃ and 5.2×104 Pa, was a laboratory mutant strain used in the studies of environmental adaptation mechanisms in a group of piezophilic hyperthermophilic archaea in Thermococcaceae. In this study, we established a new genetic tool for P. yayanosii A1, to knock down gene expression based on an endogenous active type Ⅲ-B CRISPR-Cas system.[Methods] The mini-CRISPR cluster was consisted the repeat sequences from endogenous CRISPR arrays Group I and a protospacer from a putative amylase gene (PYCH_13690). We inserted an artificial mini-CRISPR cluster into the shuttle vector pLMOShhp1, with the overexpression of the HMG-CoA (hydroxy methylglutaryl coenzyme A) reductase gene controlled by a constitutive promoter Pgdh, which conferred simvastatin resistance. And the mini-CRISPR cluster transformed crRNA, which guided the Cmr complex cut target mRNA. [Results] The ratio of mRNA cleavage of a high hydrostatic pressure inducible promoter Phhp was 33% at 5.2×104 Pa and 50% at 1.0×102 Pa, while the cleavage of constitutive promoter Phmtb was 42% at 5.2×104 Pa and 76% at 1.0×102 Pa. As a proof, the gene knockdown mutant degraded less starch than its parental strain A1 in vivo. [Conclusion] Thus, we successfully constructed a gene knockdown system based on type Ⅲ-B CRISPR-Cas system in P. yayanosii, which could be used in the genetic studies targeting essential genes in piezophilic hyperthermophiles.

    参考文献
    [1] Fang JS, Zhang L, Bazylinski DA. Deep-sea piezosphere and piezophiles:geomicrobiology and biogeochemistry. Trends in Microbiology, 2010, 18(9):413-422.
    [2] Zillig W, Reysenbach AL. Thermococcales//Bergey's manual of systematics of Archaea and Bacteria. Hoboken, NJ:John Wiley & Sons Inc, 2015.
    [3] Takai K, Nakamura K. Archaeal diversity and community development in deep-sea hydrothermal vents. Current Opinion in Microbiology, 2011, 14(3):282-291.
    [4] Cario A, Lormières F, Xiang X, Oger P. High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus. Research in Microbiology, 2015, 166(9):710-716.
    [5] Cario A, Jebbar M, Thiel A, Kervarec N, Oger PM. Molecular chaperone accumulation as a function of stress evidences adaptation to high hydrostatic pressure in the piezophilic archaeon Thermococcus barophilus. Scientific Reports, 2016(6):29483.
    [6] Zeng X, Birrien JL, Fouquet Y, Cherkashov G, Jebbar M, Querellou J, Oger P, Cambon-Bonavita MA, Xiao X, Prieur D. Pyrococcus CH1, an obligate piezophilic hyperthermophile:extending the upper pressure-temperature limits for life. The ISME Journal, 2009, 3(7):873-876.
    [7] Birrien JL, Zeng X, Jebbar M, Cambon-Bonavita MA, Quérellou J, Oger P, Bienvenu N, Xiao X, Prieur D. Pyrococcus yayanosii sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(12):2827-2881.
    [8] Xu J, Liu LP, Xu MJ, Philippe O, Wang FP, Mohamed J, Xiao X. Complete genome sequence of the obligate piezophilic hyperthermophilic archaeon Pyrococcus yayanosii CH1. Journal of Bacteriology, 2011, 193(16):4297-4298.
    [9] 李学恭. 深海超嗜热嗜压古菌Pyrococcus yayanosii压力适应性机制研究. 中国海洋大学博士学位论文, 2014.
    [10] Li XG, Fu L, Li Z, Ma XP, Xiao X, Xu J. Genetic tools for the piezophilic hyperthermophilic archaeon Pyrococcus yayanosii. Extremophiles, 2015, 19(1):59-67.
    [11] Song QH, Li Z, Chen RK, Ma XP, Xiao X, Xu J. Induction of a toxin-antitoxin gene cassette under high hydrostatic pressure enables markerless gene disruption in the hyperthermophilic archaeon Pyrococcus yayanosii. Applied and Environmental Microbiology, 2019, 85(4):e02662-18.
    [12] Li Z, Li XG, Xiao X, Xu J. An integrative genomic island affects the adaptations of the piezophilic hyperthermophilic archaeon Pyrococcus yayanosii to high temperature and high hydrostatic pressure. Frontiers in Microbiology, 2016(7):1927.
    [13] 李臻. 深海来源嗜压、超嗜热古菌Pyrococcus yayanosii基因组岛PYG1的特征及生理功能研究. 上海交通大学博士学位论文, 2017.
    [14] Michoud G, Jebbar M. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii. Scientific Reports, 2016(6):27289.
    [15] Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The biology of CRISPR-Cas:backward and forward. Cell, 2018, 172(6):1239-1259.
    [16] Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, van der Oost J, Koonin EV. Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 2011, 9(6):467-477.
    [17] Hochstrasser ML, Taylor DW, Kornfeld JE, Nogales E, Doudna JA. DNA targeting by a minimal CRISPR RNA-guided cascade. Molecular Cell, 2016, 63(5):840-851.
    [18] Samai P, Pyenson N, Jiang WY, Goldberg GW, Hatoum-Aslan A, Marraffini LA. Co-transcriptional DNA and RNA cleavage during type Ⅲ CRISPR-cas immunity. Cell, 2015, 161(5):1164-1174.
    [19] Elmore JR, Sheppard NF, Ramia N, Deighan T, Li H, Terns RM, Terns MP. Bipartite recognition of target RNAs activates DNA cleavage by the type Ⅲ-B CRISPR-Cas system. Genes and Development, 2016(30):447-459.
    [20] Stachler AE, Schwarz TS, Schreiber S, Marchfelder A. CRISPRi as an efficient tool for gene repression in archaea. Methods, 2020(172):76-85.
    [21] Zebec Z, Manica A, Zhang J, White MF, Schleper C. CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus. Nucleic Acids Research, 2014, 42(8):5280-5288.
    [22] Peng N, Han WY, Li YJ, Liang YX, She QX. Genetic technologies for extremely thermophilic microorganisms of Sulfolobus, the only genetically tractable genus of crenarchaea. Science China Life Sciences, 2017, 60(4):370-385.
    [23] Peng WF, Feng MX, Feng X, Liang YX, She QX. An archaeal CRISPR type Ⅲ-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference. Nucleic Acids Research, 2015, 43(1):406-417.
    [24] Liu T, Pan SF, Li YJ, Peng N, She QX. Type Ⅲ CRISPR-Cas system:introduction and its application for genetic manipulations. Current Issues in Molecular Biology, 2018(26):1-14.
    [25] 彭文舫. Sulfolobus islandicus CRISPR-Cas病毒防御功能的遗传学分析. 华中农业大学博士学位论文, 2015.
    [26] Deng L, Garrett RA, Shah SA, Peng X, She QX. A novel interference mechanism by a type Ⅲ-B CRISPR-Cmr module in Sulfolobus. Molecular Microbiology, 2013, 87(5):1088-1099.
    [27] Osawa T, Inanaga H, Sato C, Numata T. Crystal structure of the CRISPR-CAS RNA silencing cmr complex bound to a target analog. Molecular Cell, 2015, 58(3):418-430.
    [28] Ramia NF, Spilman ??椠潔污潮杧礠??椠??????????ぬ??????????ぬ? C, Cocozaki A, Bhattacharya N, Terns RM, Terns MP, Li H, Stagg SM. Essential structural and functional roles of the Cmr4 subunit in RNA cleavage by the Cmr CRISPR-Cas complex. Cell Reports, 2014, 9(5):1610-1617.
    [29] Shao YM, Cocozaki AI, Ramia NF, Terns RM, Terns MP, Li H. Structure of the Cmr2-Cmr3 subcomplex of the Cmr RNA silencing complex. Structure, 2013, 21(3):376-384.
    [30] Cocozaki AI, Ramia NF, Shao YM, Hale CR, Terns RM, Terns MP, Li H. Structure of the Cmr2 subunit of the CRISPR-Cas RNA silencing complex. Structure, 2012, 20(3):545-553.
    [31] Hale C, Kleppe K, Terns RM, Terns MP. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA, 2008(14):2572-2579.
    [32] Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell, 2009, 139(5):945-956.
    [33] Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database:a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research, 2000, 28(1):33-36.
    [34] Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT:a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 2002, 30(14):3059-3066.
    [35] Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl:a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 2009, 25(15):1972-1973.
    [36] Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 2015, 32(1):268-274.
    [37] Grissa I, Vergnaud G, Pourcel C. CRISPRFinder:a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Research, 2007, 35(S2):W52-W57.
    [38] Norais C, Moisan A, Gaspin C, Clouet-d'Orval B. Diversity of CRISPR systems in the euryarchaeal Pyrococcales. RNA
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈柔珂,吕永新,张欢欢,宋庆浩,徐俊. 基于内源III-B型CRISPR-Cas系统构建超嗜热火球菌Pyrococcus yayanosii A1的基因敲降系统[J]. 微生物学报, 2021, 61(7): 1920-1932

复制
分享
文章指标
  • 点击次数:355
  • 下载次数: 1328
  • HTML阅读次数: 1229
  • 引用次数: 0
历史
  • 收稿日期:2020-06-12
  • 最后修改日期:2020-07-24
  • 在线发布日期: 2021-07-07
文章二维码