裂解性多糖单加氧酶HcLPMO与纤维素酶协同降解纤维素
作者:
基金项目:

国家重点研发计划(2018YFA0902200);天津市合成生物技术创新能力提升行动(TSBICIP-KJGG-006);国家自然科学基金(31901066);天津市科技支撑计划(18ZXYENC00150)


Synergistic degradation of cellulose by lytic polysaccharides monooxygenase HcLPMO and cellulase
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 为研究HcLPMO的活性测定方法及其与纤维素酶的协同降解特性。[方法] 利用大肠杆菌表达系统进行HcLPMO异源表达,研究以AmplexTM Ultra Red为荧光底物的LPMOs活性检测条件;研究HcLPMO与纤维素酶最优配比协同降解微晶纤维素及其他多种生物质底物的能力。[结果] 表达条件确定最适装液量为20%,最适诱导温度为20℃。活性测定研究结果表明HcLPMO需先与铜离子结合才具有活性,电子供体抗坏血酸钠(ASC)最适浓度为10–4 mol/L,并发现AmplexTM Ultra Red浓度以及辣根过氧化物酶浓度对酶活的检测影响较小。HcLPMO与纤维素酶协同降解微晶纤维素研究确定HcLPMO与纤维素酶最优配比为2:3,葡萄糖产量相较纤维素酶单独作用提高了99.48%。此外,针对多种生物质底物,发现该酶与纤维素酶的复配体系对汽爆玉米秸秆和微晶纤维素的协同降解效果较好,相较于单独用纤维素水解酶,葡萄糖产量分别提高了63.81%和59.43%,而对碱处理玉米芯和木薯渣降解效果次之,葡萄糖产量仅分别提高35.41%和11.06%。[结论] HcLPMO与纤维素酶复配能够有效提高酶法降解纤维素效率;而底物前处理如蒸汽爆破或碱处理对于HcLPMO与纤维素酶协同降解木质纤维素影响较大。

    Abstract:

    [Objective] To study the synergistic degradation of cellulose by lytic polysaccharide monooxygenase HcLPMO and cellulase. [Methods] We used E. coli for heterologous expression of HcLPMO and studied the influences of various conditions on the activity detection of LPMOs with AmplexTM Ultra Red as fluorogenic substrate. Subsequently, we studied the synergistic degradation of avicel and other biomass substrates with different proportion of HcLPMO and cellulase.[Results] We found the optimal filling liquid volume was 20% and the optimal induction temperature was 20℃ for HcLPMO expression. The results of activity determination show that HcLPMO had activity only when it was combined with copper ions. The optimal concentration of sodium ascorbate was 10-4 mol/L. We also found that the concentration of AmplexTM Ultra Red and horseradish peroxidase had little effect on the detection of enzyme activity. For the synergistic degradation of avicel by HcLPMO and cellulase, we found the optimal ratio of HcLPMO to cellulase was 2:3, and the yield of glucose increased by 99.48% compared with cellulase alone. In addition, for a variety of biomass substrates, HcLPMO and cellulase had better synergistic degradation efficiency on steam exploded straw and microcrystalline cellulose from which the yield of glucose increased by 63.81% and 59.43%, respectively, compared with using cellulase alone. For alkali treated corn cob and cassava residue, the yield of glucose only increased by 35.41% and 11.06%, respectively.[Conclusion] The appropriate ratio of HcLPMO and cellulase can effectively improve the efficiency of enzymatic degradation of cellulose, and substrate pretreatment is very helpful for the synergistic degradation of lignocellulose by HcLPMO and cellulase.

    参考文献
    [1] Li YH, Zhao FK. Advances in cellulase research. Chinese Bulletin of Life Sciences, 2005, 17(5):392-397. (in Chinese)李燕红, 赵辅昆. 纤维素酶的研究进展. 生命科学, 2005, 17(5):392-397.
    [2] Shi XW, Zhang WT, Zhang XF, Yang GY, Feng Y. The heterologous expression and characterization of lytic polysaccharide monooxygenase from Actinosynnema mirum DSM 43827. China Biotechnology, 2014, 34(7):17-23. (in Chinese)施贤卫, 张伟涛, 张小飞, 杨广宇, 冯雁. Actinosynnema mirum DSM43827溶解性多糖单加氧酶的异源表达和酶学性质表征. 中国生物工程杂志, 2014, 34(7):17-23.
    [3] Hemsworth GR, Davies GJ, Walton PH. Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Current Opinion in Structural Biology, 2013, 23(5):660-668.
    [4] Du LP, Ma LJ, Ma Q, Guo GJ, Han XX, Xiao DG. Hydrolytic boosting of lignocellulosic biomass by a fungal lytic polysaccharide monooxygenase, AnLPMO15g from Aspergillus niger. Industrial Crops and Products, 2018(126):309-315.
    [5] Kuusk S, Kont R, Kuusk P, Heering A, Sørlie M, Bissaro B, Eijsink VGH, Väljamäe P. Kinetic insights into the role of the reductant in H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. Journal of Biological Chemistry, 2018, 294(5):1516-1528.
    [6] Wu M, Beckham GT, Larsson AM, Ishida T, Kim S, Payne CM, Himmel ME, Crowley MF, Horn SJ, Westereng B, Igarashi K, Samejima M, Ståhlberg J, Eijsink VGH, Sandgren M. Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the basidiomycota fungus phanerochaete chrysosporium. Journal of Biological Chemistry, 2013, 288(18):12828-12839.
    [7] Zhu N, Liu J, Yang J, Lin Y, Yang Y, Ji L, Li M, Yuan H. Comparative analysis of the secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-state fermentation reveals its unique lignocellulose- degrading enzyme system. Biotechnology for Biofuels, 2016(9):42.
    [8] Sanhueza C, Carvajal G, Soto-Aguilar J, Lienqueo ME, Salazar O. The effect of a lytic polysaccharide monooxygenase and a xylanase from Gloeophyllum trabeum on the enzymatic hydrolysis of lignocellulosic residues using a commercial cellulase. Enzyme and Microbial Technology, 2017(113):75-82.
    [9] Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnology for Biofuels, 2013(6):41.
    [10] Liu B, Kognole AA, Wu M, Westereng B, Crowley MF, Kim S, Dimarogona M, Payne CM, Sandgren M. Structural and molecular dynamics studies of a C1-oxidizing lytic polysaccharide monooxygenase from Heterobasidion irregulare reveal amino acids important for substrate recognition. The FEBS Journal, 2018, 285(12):2225-2242.
    [11] Hemsworth GR, Taylor EJ, Kim RQ, Gregory RC, Lewis SJ, Turkenburg JP, Parkin A, Davies GJ, Walton PH. The copper active site of CBM33 polysaccharide oxygenases. Journal of the American Chemical Society, 2013, 135(16):6069-6077.
    [12] Lombard V, Ramulu GH, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 2013(42):D490-D495.
    [13] Couturier M, Ladevèze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, Villares A, Cathala B, Chaspoul F, Frandsen KE, Labourel A, Herpoël-Gimbert I, Grisel S, Haon M, Lenfant N, Rogniaux H, Ropartz D, Davies GJ, Rosso MN, Walton PH, Henrissat B, Berrin JG. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nature Chemical Biology, 2018, 14(3):306-310.
    [14] Tandrup T, Frandsen KEH, Johansen KS, Berrin JG, Lo Leggio L. Recent insights into lytic polysaccharide monooxygenases (LPMOs). Biochemical Society Transactions, 2018, 46(6):1431-1447.
    [15] Filiatrault-Chastel C, Navarro D, Haon M, Grisel S, Herpoël-Gimbert I, Chevret D, Fanuel M, Henrissat B, Heiss-Blanquet S, Margeot A, Berrin JG. AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes. Biotechnology for Biofuels, 2019(12):55.
    [16] Forsberg Z, Sørlie M, Petrović D, Courtade G, Aachmann FL, Vaaje-Kolstad G, Bissaro B, Røhr ÅK, Eijsink VGH. Polysaccharide degradation by lytic polysaccharide monooxygenases. Current Opinion in Structural Biology, 2019(59):54-64.
    [17] Petrović DM, Bissaro B, Chylenski P, Skaugen M, Sørlie M, Jensen MS, Aachmann FL, Courtade G, Várnai A, Eijsink VGH. Methylation of the N-terminal histidine protects a lytic polysaccharide monooxygenase from auto-oxidative inactivation. Protein Science, 2018, 27(9):1636-1650.
    [18] Ghatge SS, Telke AA, Waghmode TR, Lee Y, Lee KW, Oh DB, Shin HD, Kim SW. Multifunctional cellulolytic auxiliary activity protein HcAA10-2 from Hahella chejuensis enhances enzymatic hydrolysis of crystalline cellulose. Applied Microbiology and Biotechnology, 2015, 99(7):3041-3055.
    [19] Kittl R, Kracher D, Burgstaller D, Haltrich D, Ludwig R. Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechnology for Biofuels, 2012, 5(1):79.
    [20] Loose JSM, Forsberg Z, Fraaije MW, Eijsink VGH, Vaaje-Kolstad G. A rapid quantitative activity assay shows that the Vibrio cholerae colonization factor GbpA is an active lytic polysaccharide monooxygenase. FEBS Letters, 2014, 588(18):3435-3440.
    [21] Zhang RQ, Liu YC, Zhang Y, Feng D, Hou SL, Guo W, Niu KL, Jiang Y, Han LJ, Sindhu L, Fang X. Identification of a thermostable fungal lytic polysaccharide monooxygenase and evaluation of its effect on lignocellulosic degradation. Applied Microbiology and Biotechnology, 2019, 103(14):5739-5750.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄天晨,杨建花,唐梓静,高乐,张东远,侯颖,朱蕾蕾. 裂解性多糖单加氧酶HcLPMO与纤维素酶协同降解纤维素[J]. 微生物学报, 2021, 61(7): 1971-1982

复制
分享
文章指标
  • 点击次数:655
  • 下载次数: 1120
  • HTML阅读次数: 1521
  • 引用次数: 0
历史
  • 收稿日期:2020-07-10
  • 最后修改日期:2020-10-20
  • 在线发布日期: 2021-07-07
文章二维码