肠道菌群对耐碳青霉烯类肠杆菌科细菌定殖抗性的研究进展
作者:
基金项目:

陕西省重点研发计划(2017SF-128)


Research progress on the colonization resistance of intestinal flora to carbapenem-resistant Enterobacteriaceae
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [65]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    耐碳青霉烯类肠杆菌科细菌(carbapenem-resistant Enterobacteriaceae,CRE)在肠腔中定殖通常先于或并存于CRE的感染。正常情况下,定殖的CRE、肠道菌群和宿主相互作用,处于稳定平衡的状态,当肠道菌群出现失调时,肠道正常菌群失去对定殖CRE的抵抗力,增加CRE感染的风险。大量研究表明通过肠道共生菌群对CRE的定殖抗性不仅可以预防感染,而且也可以降低医疗环境中患者间相互传播的风险。本文就CRE的流行现状、肠杆菌科细菌定殖机制以及肠道共生菌群对CRE定殖抗性机制作一综述,以期为CRE感染的防控工作提供新思路和新方法。

    Abstract:

    The colonization of carbapenem-resistant Enterobacteriaceae (CRE) in the intestinal lumen usually precedes or coexists with CRE infection. The intestinal flora and host normally interact with the colonized CRE to achieve a stable equilibrium state. When dysbacteriosis happens, the intestinal flora losses its resistance to the colonized CRE, increasing the risk of CRE infection. A large number of studies suggest that the resistance of intestinal symbiotic flora to the colonization of CRE can not only prevent infection, but also reduce the risk of mutual transmission among patients exposed to the medical environment. To provide a new idea and method for prevention and control of CRE infection, we studied the prevalence of CRE,the colonization mechanisms of Enterobacteriaceae, and the mechanisms of colonizing resistance to CRE of intestinal flora.

    参考文献
    [1] Wang Z, Qin RR, Huang L, Sun LY. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection and mortality of Klebsiella pneumoniae infection. Chinese Medical Journal, 2018, 131(1):56-62.
    [2] Martin RM, Cao J, Brisse S, Passet V, Wu WS, Zhao LL, Malani PN, Rao K, Bachman MA, Castanheira M. Molecular epidemiology of colonizing and infecting isolates of Klebsiella pneumoniae. Msphere, 2016, 1(5):e00261-16.
    [3] Gorrie CL, Mirčeta M, Wick RR, Edwards DJ, Thomson NR, Strugnell RA, Pratt NF, Garlick JS, Watson KM, Pilcher DV, McGloughlin SA, Spelman DW, Jenney AWJ, Holt KE. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clinical Infectious Diseases, 2017, 65(2):208-215.
    [4] Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N, Woodford N, Yilmaz FO, Zorzet A. Discovery, research, and development of new antibiotics:the who priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 2018, 18(3):318-327.
    [5] Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. World Journal of Gastroenterology, 2015, 21(29):8787-8803.
    [6] Korach-Rechtman H, Hreish M, Fried C, Gerassy-Vainberg S, Azzam ZS, Kashi Y, Berger G. Intestinal dysbiosis in carriers of carbapenem-resistant Enterobacteriaceae. mSphere, 2020, 5(2):e00173-20.
    [7] Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nature Reviews Microbiology, 2017, 15(10):630-638.
    [8] Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nature Medicine, 2019, 25(5):716-729.
    [9] Keith JW, Pamer EG. Enlisting commensal microbes to resist antibiotic-resistant pathogens. Journal of Experimental Medicine, 2019, 216(1):10-19.
    [10] Sader HS, Castanheira M, Arends SJR, Goossens H, Flamm RK. Geographical and temporal variation in the frequency and antimicrobial susceptibility of bacteria isolated from patients hospitalized with bacterial pneumonia:results from 20 years of the sentry antimicrobial surveillance program (1997-2016). Journal of Antimicrobial Chemotherapy, 2019, 74(6):1595-1606.
    [11] Castanheira M, Deshpande LM, Mendes RE, Canton R, Sader HS, Jones RN. Variations in the occurrence of resistance phenotypes and carbapenemase genes among Enterobacteriaceae isolates in 20 years of the SENTRY antimicrobial surveillance program. Open Forum Infectious Diseases, 2019, 6(S1):S23-S33.
    [12] Brolund A, Lagerqvist N, Byfors S, Struelens MJ, Monnet DL, Albiger B, Kohlenberg A. Worsening epidemiological situation of carbapenemase-producing Enterobacteriaceae in europe, assessment by national experts from 37 countries, July 2018. Eurosurveillance, 2019, 24(9):1900123.
    [13] Hu FP, Guo Yan, Zhu DM, Wang F, Jiang XF, Xu YC, Zhang XJ, Zhang ZX, Ji P, Xie Y, Kang M, Wang CQ, Wang AM, Xu YH, Huang Y, Sun ZY, Chen ZJ, Ni YX, Sun JY, Chu YZ, Tian SF, Hu ZD, Li J, Yu YS, Lin J, Shan B, Du Y, Guo SF, Wei LH, Zou FM, Zhang H, Wang C, Hu YJ, Ai XM, Zhuo C, Su DH, Guo DW, Zhao JY, Yu H, Huang XN, Liu WE, Li YM, Jin Y, Shao CH, Xu XS, Yan C, Wang SM, Chu YF, Zhang LX, Ma J, Zhou SP, Zhou Y, Zhu L, Meng JH, Dong F, Zheng HY, Hu FF, Shen H, Zhou WQ, Jia W, Li G, Wu JS, Lu YM, Li JH, Duan JJ, Kang JB, Ma XB, Zheng YP, Guo RY, Zhu Y, Chen YS, Meng Q. CHINET surveillance of bacterial resistance across tertiary hospitals in 2019. Chinese Journal of Infection and Chemotherapy, 2020, 20(3):233-243. (in Chinese) 胡付品, 郭燕, 朱德妹, 汪复, 蒋晓飞, 徐英春, 张小江, 张朝霞, 季萍, 谢轶, 康梅, 王传清, 王爱敏, 徐元宏, 黄颖, 孙自镛, 陈中举, 倪语星, 孙景勇, 褚云卓, 田素飞, 胡志东, 李金, 俞云松, 林洁, 单斌, 杜艳, 郭素芳, 魏莲花, 邹凤梅, 张泓, 王春, 胡云建, 艾效曼, 卓超, 苏丹虹, 郭大文, 赵金英, 喻华, 黄湘宁, 刘文恩, 李艳明, 金炎, 邵春红, 徐雪松, 鄢超, 王山梅, 楚亚菲, 张利侠, 马娟, 周树平, 周艳, 朱镭, 孟晋华, 董芳, 郑红艳, 胡芳芳, 沈瀚, 周万青, 贾伟, 李刚, 吴劲松, 卢月梅, 李继红, 段金菊, 康建邦, 马晓波, 郑燕萍, 郭如意, 朱焱, 陈运生, 孟青. 2019年CHINET三级医院细菌耐药监测. 中国感染与化疗杂志, 2020, 20(3):233-243.
    [14] Li CC, Hu TP. Advances in the mechanism of carbapenem-resistant Enterobacteriaceae bacteria. Laboratory Medicine and Clinic, 2019, 16(11):1600-1604. (in Chinese) 李翠翠, 胡同平. 碳青霉烯类耐药肠杆菌科细菌的耐药机制研究进展. 检验医学与临床, 2019, 16(11):1600-1604.
    [15] Pitout JDD, Peirano G, Kock MM, Strydom KA, Matsumura Y. The global ascendency of OXA-48-type carbapenemases. Clinical Microbiology Reviews, 2019, 33(1):e00102-19.
    [16] Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae:the impact and evolution of a global menace. The Journal of Infectious Diseases, 2017, 215(S1):S28-S36.
    [17] Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infectious Diseases, 2013, 13(9):785-796.
    [18] Vaca DJ, Thibau A, Schütz M, Kraiczy P, Happonen L, Malmström J, Kempf VAJ. Interaction with the host:the role of fibronectin and extracellular matrix proteins in the adhesion of gram-negative bacteria. Medical Microbiology and Immunology, 2020, 209(3):277-299.
    [19] Heise T, Dersch P. Identification of a domain in Yersinia virulence factor yadA that is crucial for extracellular matrix-specific cell adhesion and uptake. Proceedings of the National Academy of Sciences of the United States of America, 2006:103(9):3375-3380.
    [20] Bohn E, Sonnabend M, Klein K, Autenrieth IB. Bacterial adhesion and host cell factors leading to effector protein injection by type III secretion system. International Journal of Medical Microbiology, 2019, 309(5):344-350.
    [21] Dreux N, Denizot J, Martinez-Medina M, Mellmann A, Billig M, Kisiela D, Chattopadhyay S, Sokurenko E, Neut C, Gower-Rousseau C, Colombel JF, Bonnet R, Darfeuille-Michaud A, Barnich N. Point mutations in FimH adhesin of crohn's disease-associated adherent-invasive Escherichia coli enhance intestinal inflammatory response. PLoS Pathogens, 2013, 9(1):e1003141.
    [22] Stones DH, Krachler AM. Fatal attraction:how bacterial adhesins affect host signaling and what we can learn from them. International Journal of Molecular Sciences, 2015, 16(2):2626-2640.
    [23] Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms:a focus on anti-biofilm agents and their mechanisms of action. Virulence, 2018, 9(1):522-554.
    [24] Hartmann M, Papavlassopoulos H, Chandrasekaran V, Grabosch C, Beiroth F, Lindhorst TK, Röhl C. Inhibition of bacterial adhesion to live human cells:activity and cytotoxicity of synthetic mannosides. FEBS Letters, 2012, 586(10):1459-1465.
    [25] Totsika M, Kostakioti M, Hannan TJ, Upton M, Beatson SA, Janetka JW, Hultgren SJ, Schembri MA. A fimh inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug-resistant uropathogenic Escherichia coli ST131. The Journal of Infectious Diseases, 2013, 208(6):921-928.
    [26] Pereira FC, Berry D. Microbial nutrient niches in the gut. Environmental Microbiology, 2017, 19(4):1366-1378.
    [27] Sorbara MT, Pamer EG. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunology, 2019, 12(1):1-9.
    [28] Pickard JM, Zeng MY, Caruso R, Nunez G. Gut microbiota:role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews, 2017, 279(1):70-89.
    [29] Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nature Reviews Immunology, 2013, 13(11):790-801.
    [30] Maltby R, Leatham-Jensen MP, Gibson T, Cohen PS, Conway T. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine. PLoS ONE, 2013, 8(1):e53957.
    [31] Stecher B, Chaffron S, Käppeli R, Hapfelmeier S, Freedrich S, Weber TC, Kirundi J, Suar M, McCoy KD, Von Mering C, Macpherson AJ, Hardt WD. Like will to like:abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathogens, 2010, 6(1):e1000711.
    [32] Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ, Contreras H, Libby SJ, Fang FC, Raffatellu M. Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host & Microbe, 2013, 14(1):26-37.
    [33] Gielda LM, DiRita VJ. Zinc competition among the intestinal microbiota. mBio, 2012, 3(4):e00171-12.
    [34] Wang LJ, Li P, Fu BS. Advances in research on antibacterial mechanism of lactic acid bacteria bacteriocin. Food Science and Technology, 2020, 45(1):36-42. (in Chinese) 王利君, 郦萍, 付碧石. 乳酸菌细菌素抗菌作用机制研究进展. 食品科技, 2020, 45(1):36-42.
    [35] Sassone-Corsi M, Nuccio SP, Liu H, Hernandez D, Vu CT, Takahashi AA, Edwards RA, Raffatellu M. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature, 2016, 540(7632):280-283.
    [36] Brunati C, Thomsen TT, Gaspari E, Maffioli S, Sosio M, Jabes D, Løbner-Olesen A, Donadio S. Expanding the potential of NAI-107 for treating serious ESKAPE pathogens:synergistic combinations against gram-negatives and bactericidal activity against non-dividing cells. Journal of Antimicrobial Chemotherapy, 2018, 73(2):414-424.
    [37] Basler M. Type VI secretion system:secretion by a contractile nanomachine. Philosophical Transactions of the Royal Society B:Biological Sciences, 2015, 370(1679):20150021.
    [38] Brackmann M, Nazarov S, Wang J, Basler M. Using force to punch holes:mechanics of contractile nanomachines. Trends in Cell Biology, 2017, 27(9):623-632.
    [39] Yin M, Yan ZF, Li XM. Architecture of type VI secretion system membrane core complex. Cell Research, 2019, 29(3):251-253.
    [40] Liang XY, Xu P, Dong T. Effector recognition and translocation by type Ⅵ protein secretion system in gram-negative bacteria. Microbiology China, 2019, 46(2):339-344. (in Chinese) 梁小夜, 许平, 董涛. 从效应蛋白视角看革兰氏阴性细菌Ⅵ型蛋白分泌系统底物转运机理. 微生物学通报, 2019, 46(2):339-344.
    [41] Coyne MJ, Roelofs KG, Comstock LE. Type VI secretion systems of human gut bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements. BMC Genomics, 2016, 17(1):58.
    [42] Burkinshaw BJ, Liang XY, Wong MG, Le ANH, Lam L, Dong TG. A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nature Microbiology, 2018, 3(5):632-640.
    [43] Russell AB, Peterson SB, Mougous JD. Type VI secretion system effectors:poisons with a purpose. Nature Reviews Microbiology, 2014, 12(2):137-148.
    [44] Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W, Mougous JD. Type VI secretion delivers bacteriolytic effectors to target cells. Nature, 2011, 475(7356):343-347.
    [45] Sorbara MT, Dubin K, Littmann ER, Moody TU, Fontana E, Seok R, Leiner IM, Taur Y, Peled JU, Van Den Brink MRM, Litvak Y, Bäumler AJ, Chaubard J, Pickard AJ, Cross JR, Pamer EG. Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. Journal of Experimental Medicine, 2019, 216(1):84-98.
    [46] Rivera-Chávez F, Zhang LF, Faber F, Lopez CA, Byndloss MX, Olsan EE, Xu GG, Velazquez EM, Lebrilla CB, Winter SE, Bäumler AJ. Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host & Microbe, 2016, 19(4):443-454.
    [47] Byndloss MX, Olsan EE, Rivera-Chávez F, Tiffany CR, Cevallos SA, Lokken KL, Torres TP, Byndloss AJ, Faber F, Gao YD, Litvak Y, Lopez CA, Xu GG, Napoli E, Giulivi C, Tsolis RM, Revzin A, Lebrilla CB, Bäumler AJ. Microbiota-activated ppar-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science, 2017, 357(6351):570-575.
    [48] Cai R, Cheng C, Chen JW, Xu XQ, Ding C, Gu B. Interactions of commensal and pathogenic microorganisms with the mucus layer in the colon. Gut Microbes, 2020, 11(4):680-690.
    [49] Li QR. Intestinal barrier injury and enterogenic infection. Parenteral & Enteral Nutrition, 2017, 24(2):65-67. (in Chinese) 李秋荣. 肠屏障损伤与肠源性感染. 肠外与肠内营养, 2017, 24(2):65-67.
    [50] Xue L, He JT, Gao N, Lu XL, Li M, Wu XK, Liu ZS, Jin YF, Liu JL, Xu JR, Geng Y. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Scientific Reports, 2017, 7(1):45176.
    [51] Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, Mascianà R, Forgione A, Gabrieli ML, Perotti G, Vecchio FM, Rapaccini G, Gasbarrini G, Day CP, Grieco A. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology, 2009, 49(6):1877-1887.
    [52] Wrzosek L, Miquel S, Noordine ML, Bouet S, Chevalier-Curt MJ, Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, Langella P, Thomas M. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biology, 2013, 11(1):61.
    [53] Kim Y, Kim SH, Whang KY, Kim YJ, Oh S. Inhibition of escherichia coli O157:H7 attachment by interactions between lactic acid bacteria and intestinal epithelial cells. Journal of Microbiology and Biotechnology, 2008:18(7):1278-1285.
    [54] Yan F, Cao HW, Cover TL, Whitehead R, Washington MK, Polk DB. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology, 2007, 132(2):562-575.
    [55] Gargiullo L, Del Chierico F, D'Argenio P, Putignani L. Gut microbiota modulation for multidrug-resistant organism decolonization:present and future perspectives. Frontiers in Microbiology, 2019, 10:1704.
    [56] Kallen A, Guh A. United states centers for disease control and prevention issue updated guidance for tackling carbapenem-resistant Enterobacteriaceae. Eurosurveillance, 2012, 17(26):20207.
    [57] Chen ML, Wang SJ, Kuang JQ, Liu R, Li DM, He YX, Cao YL, Gao Y. Active screening of CRE in intensive care unit and its effect. Chinese Journal of Nosocomiology, 2017, 27(18):4123-4126. (in Chinese) 陈美恋, 王守军, 匡季秋, 刘荣, 李冬梅, 郝云霄, 曹煜隆, 高燕. 重症监护病区CRE主动筛查及其效果评价. 中华医院感染学杂志, 2017, 27(18):4123-4126.
    [58] Zeng XY, Zhang HP, Chen XR, Qiu XL, Weng YP, Lin LL, Wu YH, Yan JY. Value of active screening of multidrug-resistant organisms in control of nosocomial infections in ICU. Chinese Journal of Nosocomiology, 2016, 26(10):2373-2375. (in Chinese) 曾秀玉, 张华平, 陈夏容, 邱秀兰, 翁月萍, 林丽玲, 吴逸海, 颜江云. 多药耐药菌主动筛查在ICU医院感染预防控制中的价值. 中华医院感染学杂志, 2016, 26(10):2373-2375.
    [59] Zhang L, Dong AY, Wang YS, Fu YB, Huang JZ, Xing H, Wang N. Analysis of clinical infections of carbapenem resistant Enterobacteriaceae from 2013 to 2017. Chinese Journal of Antibiotics, 2018, 43(5):553-557. (in Chinese) 张嫘, 董爱英, 汪亚斯, 付玉冰, 黄军祉, 邢欢, 王娜. 2013-2017年临床耐碳青霉烯类肠杆菌科细菌感染检测结果分析. 中国抗生素杂志, 2018, 43(5):553-557.
    [60] Zhang Y, Wu J, Zhang XL, Wang Y, Su XM, Yang XY, Zhang ZR, Li HL. Advances in active screening of carbapenem-resistant Enterobacteriaceae. Chinese Journal of Microecology, 2019, 31(5):610-612. (in Chinese) 张义, 邬建, 张晓丽, 王勇, 苏晓曼, 杨雪莹, 张译如, 李慧玲. 碳青霉烯耐药肠杆菌科细菌主动筛查研究进展. 中国微生态学杂志, 2019, 31(5):610-612.
    [61] York A. FMT in the clinic. Nature Reviews Microbiology, 2019, 17(3):127.
    [62] Zhang FM, Wang HG, Wang M, Cui BT, Fan ZN, Ji GZ. Fecal microbiota transplantation for severe enterocolonic fistulizing crohn's disease. World Journal of Gastroenterology, 2013, 19(41):7213-7216.
    [63] Zhang FM. Rethinking microbial reconstruction for dysbiosis-related disease. Journal of Medical Postgraduates, 2019, 32(12):1233-1236. (in Chinese) 张发明. 菌群重建治疗菌群失调相关性疾病的再认识. 医学研究生学报, 2019, 32(12):1233-1236.
    [64] Dinh A, Fessi H, Duran C, Batista R, Michelon H, Bouchand F, Lepeule R, Vittecoq D, Escaut L, Sobhani I, Lawrence C, Chast F, Ronco P, Davido B. Clearance of carbapenem-resistant Enterobacteriaceae vs vancomycin-resistant enterococci carriage after faecal microbiota transplant:a prospective comparative study. Journal of Hospital Infection, 2018, 99(4):481-486.
    [65] Davido B, Batista R, Michelon H, Lepainteur M, Bouchand F, Lepeule R, Salomon J, Vittecoq D, Duran C, Escaut L, Sobhani I, Paul M, Lawrence C, Perronne C, Chast F, Dinh A. Is faecal microbiota transplantation an option to eradicate highly drug-resistant enteric bacteria carriage? Journal of Hospital Infection, 2017, 95(4):433-437.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

雷静,刘泽世,雷珂,薛丽,耿燕. 肠道菌群对耐碳青霉烯类肠杆菌科细菌定殖抗性的研究进展[J]. 微生物学报, 2021, 61(8): 2306-2315

复制
分享
文章指标
  • 点击次数:401
  • 下载次数: 1234
  • HTML阅读次数: 1768
  • 引用次数: 0
历史
  • 收稿日期:2020-10-10
  • 最后修改日期:2020-12-28
  • 在线发布日期: 2021-08-04
文章二维码