纤维素降解菌烟曲霉HZ1的基因组测序及生物信息学分析
作者:
基金项目:

四川省科技计划(2019YFG0139)


Genome sequencing and bioinformatics analysis of cellulolytic fungus Aspergillus fumigatus HZ1
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 烟曲霉Aspergillus fumigatus作为一类具有纤维素降解能力的真菌,对其基因组的研究,将有利于从A.fumigatus中挖掘和开发利用与纤维素降解相关的酶资源。[方法] 利用CMC选择培养基和刚果红染色法从长足大竹象肠道中分离和筛选出纤维素降解菌A.fumigatus HZ1,同时采用Illumina PE150平台进行基因组测序,随后进行了相关的生物信息学分析,此外还利用了DNS法测定了其纤维素酶活。[结果] 纤维素降解菌A.fumigatus HZ1基因组大小为27.45 Mb,GC含量为49.43%;通过NR、KOG、GO、Swissprot、eggNOG、KEGG和Pfam数据库注释结果表明基因组包含9473个基因;同时碳水化合物活性酶(CAZyme)注释结果表明基因组含有534个CAZyme基因,并与其他4种A.fumigatus基因组CAZyme分布无显著差异;本研究还鉴定出多种与木质纤维素降解相关的纤维素酶基因、半纤维素酶基因和木质素酶基因;此外纤维素酶活结果表明,在CMC培养基中其酶活呈上升趋势且具有较高活性。[结论] 本研究首次对A.fumigatus HZ1基因组进行了测序和分析,探讨了其纤维素降解的遗传基础,并通过酶活验证了其纤维素降解潜力,为该菌的实际应用提供了理论基础。

    Abstract:

    [Objective] Aspergillus fumigatus is a cellulolytic fungus. The research of its genome will facilitate the mining and development of enzyme resources associated with cellulose degradation. [Methods] A. fumigatus HZ1 was isolated from the gut of Cyrtotrachelus buqueti by CMC selective medium and Congo red staining method. Illumina PE50 platform was used to conduct genome sequence and the relative bioinformatics analysis was performed subsequently. Furthermore, the cellulase activities of this strain were determined by DNS method. [Results] The genome size of A. fumigatus HZ1 was 27.45 Mb with a GC content of 49.43%. The results from NR, KOG, GO, Swissprot, eggNOG, KEGG and Pfam database annotations reveal that the genome contained 9473 genes, and the carbohydrate active enzyme (CAZyme) annotation shows that the genome contained 534 CAZyme genes and coincided with the distribution of CAZyme in the other four A. fumigatus genomes. A variety of cellulase genes, hemicellulase genes and ligninase genes related to lignocellulose degradation were identified. In addition, cellulase activity showed an increasing trend and high activity in CMC medium. [Conclusion] Our findings provide reference for the application of A. fumigatus.

    参考文献
    [1] Wang XD, Yao CH, Wang F, Li ZD. Cellulose-based nanomaterials for energy applications. Small, 2017, 13(42):1702240.
    [2] Aro N, Pakula T, Penttilä M. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews, 2005, 29(4):719-739.
    [3] Bansal N, Tewari R, Soni R, Soni SK. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Management, 2012, 32(7):1341-1346.
    [4] Liu DY, Zhang RF, Yang XM, Wu HS, Xu DB, Tang Z, Shen QR. Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. International Biodeterioration and Biodegradation, 2011, 65(5):717-725.
    [5] Sharma M, Soni R, Nazir A, Oberoi HS, Chadha BS. Evaluation of glycosyl hydrolases in the secretome of Aspergillus fumigatus and saccharification of alkali-treated rice straw. Applied Biochemistry and Biotechnology, 2011, 163(5):577-591.
    [6] Srivastava N, Rawat R, Sharma R, Oberoi HS, Srivastava M, Singh J. Effect of nickel-cobaltite nanoparticles on production and thermostability of cellulases from newly isolated thermotolerant Aspergillus fumigatus NS (Class:Eurotiomycetes). Applied Biochemistry and Biotechnology, 2014, 174(3):1092-1103.
    [7] Luo CB, Li YQ, Liao H, Yang YJ. De novo transcriptome assembly of the bamboo snout beetle Cyrtotrachelus buqueti reveals ability to degrade lignocellulose of bamboo feedstock. Biotechnology for Biofuels, 2018, 11:292.
    [8] Luo CB, Li YQ, Chen Y, Fu C, Nong X, Yang YJ. Degradation of bamboo lignocellulose by bamboo snout beetle Cyrtotrachelus buqueti in vivo and vitro:efficiency and mechanism. Biotechnology for Biofuels, 2019, 12:75.
    [9] Luo CB, Li YQ, Chen Y, Fu C, Long WC, Xiao XM, Liao H, Yang YJ. Bamboo lignocellulose degradation by gut symbiotic microbiota of the bamboo snout beetle Cyrtotrachelus buqueti. Biotechnology for Biofuels, 2019, 12:70.
    [10] Li YQ, Lei L, Zheng L, Xiao XM, Tang H, Luo CB. Genome sequencing of gut symbiotic Bacillus velezensis LC1 for bioethanol production from bamboo shoots. Biotechnology for Biofuels, 2020, 13:34.
    [11] Lin T, Zhu GT, Zhang JH, Xu XY, Yu QH, Zheng Z, Zhang ZH, Lun YY, Li S, Wang XX, Huang ZJ, Li JM, Zhang CZ, Wang TT, Zhang YY, Wang AX, Zhang YC, Lin K, Li CY, Xiong GS, Xue YB, Mazzucato A, Causse M, Fei ZJ, Giovannoni JJ, Chetelat RT, Zamir D, Städler T, Li JF, Ye ZB, Du YC, Huang SW. Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 2014, 46(11):1220-1226.
    [12] Bolger AM, Lohse M, Usadel B. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15):2114-2120.
    [13] Li RQ, Zhu HM, Ruan J, Qian WB, Fang XD, Shi ZB, Li YR, Li ST, Shan G, Kristiansen K, Li SG, Yang HM, Wang J, Wang J. De novo assembly of human genomes with massively parallel short read sequencing. Genome Research, 2010, 20(2):265-272.
    [14] Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Research, 2005, 33(20):6494-6506.
    [15] Lowe TM, Eddy SR. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 1997, 25(5):955-964.
    [16] Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW. RNAmmer:consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 2007, 35(9):3100-3108.
    [17] Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam:an RNA family database. Nucleic Acids Research, 2003, 31(1):439-441.
    [18] Tarailo-Graovac M, Chen NS. Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics, 2009, 25(1):4.10.1-4.10.14.
    [19] Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV. The COG database:new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Research, 2001, 29(1):22-28.
    [20] Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005, 21(18):3674-3676.
    [21] Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research, 2003, 31(1):365-370.
    [22] Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P. eggNOG 4.5:a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Research, 2016, 44(D1):D286-D293.
    [23] Kanehisa M, Goto S. KEGG:Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 2000, 28(1):27-30.
    [24] Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M. Pfam:the protein families database. Nucleic Acids Research, 2014, 42(D1):D222-D230.
    [25] Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nature Methods, 2015, 12(1):59-60.
    [26] Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Informatics, 2009, 23(1):205-211.
    [27] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology, 1990, 215(3):403-410.
    [28] Miao YZ, Liu DY, Li GQ, Li P, Xu YC, Shen QR, Zhang RF. Genome-wide transcriptomic analysis of a superior biomass-degrading strain of A. fumigatus revealed active lignocellulose-degrading genes. BMC Genomics, 2015, 16(1):459.
    [29] Zhao ZT, Liu HQ, Wang CF, Xu JR. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics, 2013, 14:274.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

唐昊,郑莉,雷露,王明珺,李沅秋,罗朝兵. 纤维素降解菌烟曲霉HZ1的基因组测序及生物信息学分析[J]. 微生物学报, 2021, 61(8): 2382-2396

复制
分享
文章指标
  • 点击次数:560
  • 下载次数: 1789
  • HTML阅读次数: 1745
  • 引用次数: 0
历史
  • 收稿日期:2020-08-29
  • 最后修改日期:2020-10-23
  • 在线发布日期: 2021-08-04
文章二维码