牛樟芝免疫调节蛋白的过量表达及活性分析
作者:
基金项目:

河南省高等学校重点科研项目(21A180020,20A180022);南阳师范学院2018年博士专项(18013);河南省菌类食品工程技术研究中心开放课题(2019HM0010,HM2020-001)


Overexpression and activity analysis of Antrodia camphorata immunomodulatory protein
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    [目的] 用大肠杆菌高效表达牛樟芝免疫调节蛋白(Antrodia camphorata immunomodulatory protein,ACA)。[方法] 借助DNAworks3.2.4设计引物合成大肠杆菌密码子偏好性的ACA基因,构建于pET-32a和pGEX-4t-2,转化大肠杆菌,测序后分别命名为pET-32a-ACA/BL21和pGEX-4t-2-ACA/BL21;探索密码子偏好性、载体、培养基种类和诱导条件对ACA表达的影响并使用响应面法优化蛋白表达。纯化重组ACA (recombinant ACA,rACA)并干预小鼠巨噬细胞RAW264.7,通过测定rACA对巨噬细胞增殖能力、吞噬能力、细胞形态及产NO、肿瘤坏死因子α(tumor necrosis factor-α,TNFα)、白介素1β(interleukin-1β,IL-1β)等细胞因子能力的影响来评估rACA的活性。[结果] pET-32a-ACA/BL21更适合ACA表达;在优化的SOB (酵母粉8.92 g/L)中培养pET-32a-ACA/BL21,添加0.42 mmol/L IPTG 25℃诱导7 h时rACA以可溶性表达为主,产量达187.122 μg/mL,是目前大肠杆菌表达真菌免疫调节蛋白的最高报道。纯化的rACA能显著促进小鼠巨噬细胞增殖、提高细胞的吞噬活性和改变细胞形态,显著诱导巨噬细胞分泌NO、TNF-α和IL-1β。[结论] rACA的高效可溶性表达及类似天然ACA的活性使它可以替代天然ACA作为制药行业的食品添加剂或者免疫调节剂,甚至可以用于药物研究。

    Abstract:

    [Objective] The aim of our study is to express Antrodia camphorata immunomodulatory protein (ACA) in Escherichia coli efficiently.[Methods] We synthesized ACA gene with E. coli codon bias using DNAWorks 3.2.4 program to design and optimize primers. Then, we sequenced the PCR products, inserted the correct gene into expression vector pET-32a and pGEX-4t-2, transformed them into E. coli and named them pET-32a-ACA/BL21 and pGEX-4t-2-ACA/BL21 respectively after sequencing. We investigated the effects of codon bias, vectors, mediums and the induction conditions on the expression of recombinant ACA (rACA), and further optimized the protein expression using response surface methodology (RSM) subsequently. To evaluate the bioactivity of rACA, we determined the proliferation of RAW264.7 cells, analyzed the phagocytosis of macrophages, observed the cell morphology, detected the secretion of cytokine such as nitric oxide (NO), tumor necrosis factor-α (TNF) and interleukin-1β (IL-1β) after treated RAW264.7 cells with purified rACA. [Results] pET-32a-ACA/BL21 was more suitable for the expression of ACA. The rACA was expressed mainly in soluble form with a yield of 187.122 μg/mL, when the pET-32a-ACA/BL21 was cultured in optimized SOB medium (8.92 g/L yeast extract) and induced with 0.42 mmol/L IPTG at 25 ℃ for 7 h. This was the highest expression report for fungal immunomodulatory protein in E. coli so far. Moreover, the purified rACA promoted the proliferation of RAW264.7, enhanced the phagocytosis activity, changed the cell morphology as well as induced NO, TNF-a and IL-1β production within murine macrophages. [Conclusion] The highly soluble expression, and the very similar biological activities to native ACA make it a good candidate of native ACA for potential application as a food supplement or immunomodulatory agent in pharmaceuticals and even medical studies.

    参考文献
    [1] Lv S, Zhang MY, Luo XY, Wang CL, Huang S, He L. Optimization of extracting technology of total triterpenoids in Antrodia camphorata by central composite design-response surface methodology and study on antitumor activity of total triterpenoids. Chinese Traditional and Herbal Drugs, 2016, 47(22):3990-3996. (in Chinese) 吕莎, 张梦雅, 罗晓云, 王春丽, 黄松, 贺莲. 星点设计-效应面法优化牛樟芝总三萜提取工艺及其抗肿瘤活性研究. 中草药, 2016, 47(22):3990-3996.
    [2] Huang TT, Lan YW, Chen CM, Ko YF, Ojcius DM, Martel J, Young JD, Chong KY. Antrodia cinnamomea induces anti-tumor activity by inhibiting the STAT3 signaling pathway in lung cancer cells. Scientific Reports, 2019, 9(1):5145.
    [3] Li TY, Chiang BH. 4-acetylantroquinonol B from Antrodia cinnamomea enhances immune function of dendritic cells against liver cancer stem cells. Biomedicine & Pharmacotherapy, 2019, 109:2262-2269.
    [4] Lin TY, Tseng AJ, Qiu WL, Chao CH, Lu MK. A sulfated glucan from Antrodia cinnamomea reduces slug expression through regulation of TGFβ/AKT/GSK3β axis in lung cancer. Carbohydrate Polymers, 2019, 210:175-184.
    [5] Chen YC, Liu YC, El-Shazly M, Wu TY, Chang JG, Wu YC. Antrodia cinnamomea, a treasured medicinal mushroom, induces growth arrest in breast cancer cells, T47D cells:new mechanisms emerge. International Journal of Molecular Sciences, 2019, 20(4):833.
    [6] Chen JF, Tsai YT, Lai YH, Lin CC, Chou HC, Kuo WH, Ko ML, Wei YS, Wang YS, Lin MW, Chen YJ, Lee YR, Chan HL. Proteomic analysis of Antrodia Cinnamomea-induced ER stress in liver cancer cells. Journal of Pharmaceutical and Biomedical Analysis, 2020, 187:113142.
    [7] He RJ, Wu KX, Zhang AQ, Xie ZF, Sun PL. Mechanochemical-assisted extraction and pharmacological study of triterpenoids from Antrodia camphorata. Applied Sciences, 2019, 9(20):4281.
    [8] Lee CI, Wu CC, Hsieh SL, Lee CL, Chang YP, Chang CC, Wang YZ, Wang JJ. Anticancer effects on human pancreatic cancer cells of triterpenoids, polysaccharides and 1, 3-β-D-glucan derived from the fruiting body of Antrodia camphorata. Food Function, 2014, 5(12):3224-3232.
    [9] You RI, Lee YP, Su TY, Lin CC, Chen CS, Chu CL. A benzenoid 4,7-dimethoxy-5-methyl-L, 3-benzodioxole from Antrodia cinnamomea attenuates dendritic cell-mediated Th2 allergic responses. The American Journal of Chinese Medicine, 2019, 47(6):1271-1287.
    [10] Yi ZW, Xia YJ, Liu XF, Wang GQ, Xiong ZQ, Ai LZ. Antrodin a from mycelium of Antrodia camphorata alleviates acute alcoholic liver injury and modulates intestinal flora dysbiosis in mice. Journal of Ethnopharmacology, 2020, 254:112681.
    [11] Kuo TH, Kuo YH, Cho CY, Yao CJ, Lai GM, Chuang SE. Protective effect of Antrodia cinnamomea extract against irradiation-induced acute hepatitis. International Journal of Molecular Sciences, 2019, 20(4):846.
    [12] Hseu YC, Chen SC, Yech YJ, Wang L, Yang HL. Antioxidant activity of Antrodia camphorata on free radical-induced endothelial cell damage. Journal of Ethnopharmacology, 2008, 118(2):237-245.
    [13] Lee MT, Lin WC, Lin LJ, Wang SY, Chang SC, Lee TT. Effects of dietary Antrodia cinnamomea fermented product supplementation on metabolism pathways of antioxidant, inflammatory, and lipid metabolism pathways-a potential crosstalk. Asian-Australasian Journal of Animal Sciences, 2020, 33(7):1167-1179.
    [14] Chien SC, Chen ML, Kuo HT, Tsai YC, Lin BF, Kuo YH. Anti-inflammatory activities of new succinic and maleic derivatives from the fruiting body of Antrodia camphorata. Journal of Agricultural Food and Chemistry, 2008, 56(16):7017-7022.
    [15] Chen YC, Liu YL, Li FY, Chang CI, Wang SY, Lee KY, Li SL, Chen YP, Jinn TR, Tzen JTC. Antcin a, a steroid-like compound from Antrodia camphorata, exerts anti-inflammatory effect via mimicking glucocorticoids. Acta Pharmacologica Sinica, 2011, 32(7):904-911.
    [16] Tang HL, Nie WB, Xiao JN, Zha ZQ, Chen QL, Yin HP. Structural characterization and anti-inflammatory effect in hepatocytes of a galactoglucan from Antrodia camphorata mycelium. RSC Advances, 2019, 9(14):7664-7672.
    [17] Geethangili M, Tzeng YM. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evidence-based Complementary and Alternative Medicine, 2011, 2011:Article ID 212641.
    [18] Li HY. The effect and mechanism of Antrodia camphorata on HCC. Doctor Dissertation of Nanjing University of Chinese Medicine, 2015. (in Chinese) 李红玉. 牛樟芝抗肝癌的效应与机制研究. 南京中医药大学博士学位论文, 2015.
    [19] Zhang BB, Guan YY, Hu PF, Chen L, Xu GR, Liu LM, Cheungc PCK. Production of bioactive metabolites by submerged fermentation of the medicinal mushroom Antrodia cinnamomea:recent advances and future development. Critical Reviews in Biotechnology, 2019, 39(4):541-554.
    [20] Sheu F, Chien PJ, Hsien KY, Chin KL, Huang WT, Tsao CY, Chen YF, Cheng HC, Chang HH. Purification, cloning, and functional characterization of a novel immunomodulatory protein from Antrodia camphorata (bitter mushroom) that exhibits TLR2-dependent NF-κB activation and M1 polarization within murine macrophages. Journal of Agricultural and Food Chemistry, 2009, 57(10):4130-4141.
    [21] Li QZ, Chang YZ, He ZM, Chen L, Zhou XW. Immunomodulatory activity of Ganoderma lucidum immunomodulatory protein via PI3K/Akt and MAPK signaling pathways in RAW264.7 cells. Journal of Cellular Physiology, 2019, 234(12):23337-23348.
    [22] Chen YM, Sung HC, Kuo YH, Hsu YJ, Huang CC, Liang HL. The effects of ergosta-7,9(11), 22-trien-3β-ol from Antrodia camphorata on the biochemical profile and exercise performance of mice. Molecules, 2019, 24(7):1225.
    [23] Wang Y, Gao YN, Wang Y, Li Y, Tang LH, Bai R, Bao DP. Bioinformatic analysis of a putative immunomodulatory protein, c13717, from Ganoderma australe. Acta Edulis Fungi, 2016, 23(3):25-29. (in Chinese) 王莹, 高英女, 汪滢, 李燕, 唐利华, 白睿, 鲍大鹏. 南方灵芝中一种新型免疫调节蛋白的生物信息学分析. 食用菌学报, 2016, 23(3):25-29.
    [24] Qian BJ, Shen HF, Xiong JJ, Chen L, Zhang L, Jia JW, Wang Y, Zhang ZC, Yuan Z, Cao KM, Zhang DB. Expression and purification of the synthetic preS1 gene of hepatitis B Virus with preferred Escherichia coli codon preference. Protein Expression and Purification, 2006, 48(1):74-80.
    [25] Dong BX, Mao RQ, Li BJ, Liu QY, Xu PL, Li G. An improved method of gene synthesis based on DNA works software and overlap extension PCR. Molecular Biotechnology, 2007, 37(3):195-200.
    [26] Dong BX, Ya YK, Zhang W, Zhang YJ, Li CC, Xu AL, Li HT, Mao RQ. Molecular cloning and characterization of a novel metagenome-derived bacterial perhydrolase. Chinese Journal of Biotechnology, 2020, 36(2):276-286. (in Chinese) 董冰雪, 押玉柯, 张伟, 张英君, 李彩彩, 徐安乐, 李会庭, 毛润乾. 宏基因组来源新过水解酶的分子克隆与酶学特性. 生物工程学报, 2020, 36(2):276-286.
    [27] Dat LD, Tu NTM, Duc NV, Luyen BTT, Huyen CTT, Jang HJ, Thu DT, Huong TT, Tram LH, van Thong N, Hung ND, Kim YH, Thao NP. Anti-inflammatory secondary metabolites from the stems of Millettia dielsiana harms ex Diels. Carbohydrate Research, 2019, 484:107778.
    [28] Fu Y, Feng T, Zhao C, Tian JX, Lin HY, Sun ZX. The antitumor activity of Arca subcrenata protein. Carcinogenesis, Teratogenesis & Mutagenesis, 2014, 26(6):412-418. (in Chinese) 付莹, 冯婷, 赵晨, 田佳鑫, 林华英, 孙震晓. 毛蚶蛋白抗肿瘤活性研究. 癌变·畸变·突变, 2014, 26(6):412-418.
    [29] Srivani K, Pydi Setty Y. Effect of yeast extract concentration on microbial production of xylitol. International Journal of Biotechnology Applications, 2011, 3(3):110-113.
    [30] Lu XM, Wang J, Jin XB, Zhu JY. High-level expression of a novel liver-targeting fusion interferon with preferred Escherichia coli codon preference and its anti-hepatitis B virus activity in vivo. BMC Biotechnology, 2015, 15(1):54.
    [31] 孔祥辉. 金针菇免疫调节蛋白(FIP-fve)表达特性及活性特征研究. 东北林业大学博士学位论文, 2013.
    [32] Lin WH, Hung CH, Hsu CI, Lin JY. Dimerization of the N-terminal amphipathic α-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. Journal of Biological Chemistry, 1997, 272(32):20044-20048.
    [33] 徐贵雪. 金针菇免疫调节蛋白的重组表达及生物学特性的初探. 东北师范大学硕士学位论文, 2009.
    [34] Cong WR, Xu H, Liu Y, Li QZ, Li W, Zhou XW. Production and functional characterization of a novel fungal immunomodulatory protein FIP-SN15 shuffled from two genes of Ganoderma species. Applied Microbiology and Biotechnology, 2014, 98(13):5967-5975.
    [35] Ding Y, Seow SV, Huang CH, Liew LM, Lim YC, Kuo IC, Chua KY. Coadministration of the fungal immunomodulatory protein FIP-Fve and a tumour-associated antigen enhanced antitumour immunity. Immunology, 2009, 128:e881-e894.
    [36] Li QZ, Wang XF, Bao TW, Ran L, Lin J, Zhou XW. In vitro synthesis of a recombinant fungal immunomodulatory protein from Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.:Fr.) P. Karst. (Aphyllophoro mycetideae) and analysis of its immunomodulatory activity. International Journal of Medicinal Mushrooms, 2010, 12(4):347-358.
    [37] Sun XL, Huang W, Xiao SJ, Liang CY, Zhang SQ, Liu ZY, Sun F. Extracellular expression and efficient purification of a functional recombinant Volvariella volvacea immunomodulatory protein (FIP-vvo) using Pichia pastoris system. Protein Expression and Purification, 2014, 94:95-100.
    [38] Li SY, Nie Y, Ding Y, Shi LJ, Tang XM. Recombinant expression of a novel fungal immunomodulatory protein with human tumor cell antiproliferative activity from nectria haematococca. International Journal of Molecular Sciences, 2014, 15(10):17751-17764.
    [39] Li F, Wen HA, Liu XZ, Zhou FZ, Chen GC. Gene cloning and recombinant expression of a novel fungal immunomodulatory protein from Trametes versicolor. Protein Expression and Purification, 2012, 82(2):339-344.
    [40] Wang YY, Yan FY, Yan KL, Wang RJ, Xu N, Wang DY, Wang Y, He HN, Liu L. Extraction of ginseng proteins and immunomodulation activities in vitro. Journal of Changchun University of Chinese Medicine, 2018, 34(3):443-445. (in Chinese) 王钰莹, 闫福源, 闫凯丽, 王任晶, 许宁, 王丹阳, 汪莹, 何慧楠, 刘莉. 人参蛋白的提取和体外免疫调节活性研究. 长春中医药大学学报, 2018, 34(3):443-445.
    相似文献
    引证文献
引用本文

李彩彩,朱聪,杨国栋,吴剑锋,王晶晶,乔悦,付牧然,崔宣宣,董冰雪. 牛樟芝免疫调节蛋白的过量表达及活性分析[J]. 微生物学报, 2021, 61(8): 2397-2412

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-29
  • 最后修改日期:2020-11-04
  • 在线发布日期: 2021-08-04
文章二维码