厌氧E-MBR反应器在焦化废水处理中的微生物特性研究
作者:
基金项目:

国家工程研究中心创新能力建设项目(2013706);国家重点研发计划-煤炭清洁高效利用和新型节能技术重点专项(2017YFB0603500);辽宁省科学技术计划(2018230004)


Study on rapid start-up of anaerobic E-MBR and microbial characteristics and membrane fouling
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 将厌氧的膜生物反应器(MBR)与微生物燃料电池(MFC)耦合的厌氧电辅助膜生物反应器(E-MBR)应用于实际工业焦化废水处理。[方法] 通过正交实验优化了反应器进水的培养条件为PO43–14.3 mg/L、Fe2+0.2 mg/L、Fe3+0.1 mg/L、Co2+0.1 mg/L和Mn2+0.2 mg/L。在此条件下考察了该反应器对系统中有机污染物的去除效率及厌氧污泥的污泥特性、产电性能、胞外聚合物(EPS)、微生物群落结构及膜污染的影响。[结果] 结果表明,与未优化的培养条件相比,工业焦化废水COD的去除率提高了23%;污泥浓度(MLSS)、比重、沉降速度增加,污泥体积指数(SVI)降低,表明污泥颗粒化及沉降性能提高;污泥中溶解性EPS (SMP)、松散态EPS (LB-EPS)及紧密结合态EPS (TB-EPS)这3种组分中的蛋白质与多糖的比例(P/C)分别降低0.12、0.25和0.16,表明污泥更易于被降解;厌氧污泥的产电性能增强;高通量分子测序结果表明,反应器中污泥的群落结构发生了明显的变化,优势菌群突出;经扫描电镜(SEM)对比结果表明,反应器阴极膜的污染情况也得到了一定的减缓。[结论] 优化进水培养条件可以达到使反应器污水处理效率提高、清理周期缩短和运行更稳定等效果,对于工业废水处理技术的节能环保方面提供一定的理论依据。

    Abstract:

    [Objective] In this paper, an anaerobic electrical membrane bioreactor (E-MBR) coupled the anaerobic membrane bioreactor (MBR) and microbial fuel cell (MFC) was applied in the industrial coking wastewater treatment. [Methods] The culture conditions including nutrients and metal elements of the influent of the reactor were optimized by orthogonal experiments as 14.3 mg/L PO43–, 0.2 mg/L Fe2+, 0.1mg/L Fe3+, 0.1mg/L Co2+, 0.2 mg/L Mn2+. Under this conditions, the removal efficiency of COD, the sludge characteristics, electrical performance, extracellular polymers (EPS), microbial community structure and membrane fouling of anaerobic sludge in the reactor were investigated. [Results] The results showed the removal rate of COD was increased by 23% compared with that without optimization. Meanwhile, sludge concentration (MLSS), specific gravity and the settling speed increased, while the sludge volume index (SVI) decreased, indicating that the enhancement of the anaerobic sludge granulation and settling performance. Each component of the EPS of the sludge such as the ratio of protein to polysaccharide (P/C) soluble microbial products (SMP), loose EPS (LB-EPS) and tightly bound EPS (TB-EPS) decreased by 0.12, 0.25 and 0.16, respectively, which indicated that sludge was more easily degraded. The electrical performance of the anaerobic sludge was enhanced. The results of high-throughput molecular sequencing manifested that the community structure of sludge in the reactor had changed significantly, and the dominant bacteria group was prominent. The results of scanning electron microscopy (SEM) showed that the pollution of the cathode membrane of the reactor was also reduced. [Conclusion] The optimization of influent culture conditions could improve the efficiency of wastewater treatment, shorten the cleaning cycle and make the operation more stable, which provided a theoretical basis for energy saving and environmental protection of industrial wastewater treatment technology.

    参考文献
    [1] Fu ZM, Yang FL, An YY, Xue Y. Simultaneous nitrification and denitrification coupled with phosphorus removal in an modified anoxic/oxic-membrane bioreactor (A/O-MBR). Biochemical Engineering Journal, 2009, 43(2):191-196.
    [2] Itonaga T, Kimura K, Watanabe Y. Influence of suspension viscosity and colloidal particles on permeability of membrane used in membrane bioreactor (MBR). Water Science and Technology, 2004, 50(12):301-309.
    [3] 刘嘉栋. 微电场导电膜E-MBR膜污染控制研究. 大连理工大学博士学位论文, 2014.
    [4] Li YH, Liu LF, Yang FL, Ren NQ. Performance of carbon fiber cathode membrane with C-Mn-Fe-O catalyst in MBR-MFC for wastewater treatment. Journal of Membrane Science, 2015, 484:27-34.
    [5] Gao CF, Liu LF, Yang FL. Development of a novel proton exchange membrane-free integrated MFC system with electric membrane bioreactor and air contact oxidation bed for efficient and energy-saving wastewater treatment. Bioresource Technology, 2017, 238:472-483.
    [6] Liu LF, Zhao F, Liu JD, Yang FL. Preparation of highly conductive cathodic membrane with graphene (oxide)/PPy and the membrane antifouling property in filtrating yeast suspensions in EMBR. Journal of Membrane Science, 2013, 437:99-107.
    [7] 曹先仲. 厌氧反应器快速启动方法试验研究. 长安大学硕士学位论文, 2009.
    [8] Zhu D, Feng GY, Hu SB, Shan LW, Li XG. Study on factors affecting the activity of granular sludge in wastewater from saponin production. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2005, 33(12):103-106. (in Chinese) 朱丹, 冯贵颖, 呼世斌, 单丽伟, 李新国. 皂素废水处理中厌氧污泥活性影响因素的研究. 西北农林科技大学学报:自然科学版, 2005, 33(12):103-106.
    [9] Dong CJ, Li YX, Lü BN. Stimulation of trace metals on methangens. Journal of Taiyuan University of Technology, 2002, 33(5):495-497, 505. (in Chinese) 董春娟, 李亚新, 吕炳南. 微量金属元素对甲烷菌的激活作用. 太原理工大学学报, 2002, 33(5):495-497, 505.
    [10] Takashima M, Speece RE. Mineral nutrient requirements for high-rate methane fementation of acetate at low SRT. Journal of Water Pollution Control Federation, 1989, 61:1645-1650.
    [11] Yang YG, Xu MY, Guo J, Sun GP. Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochemistry, 2012, 47(12):1707-1714.
    [12] Morgenstern A, Paetz C, Behrend A, Spiteller D. Divalent transition-metal-ion stress induces prodigiosin biosynthesis in streptomyces coelicolor M145:formation of coeligiosins. Chemistry-A European Journal, 2015, 21(16):6027-6032.
    [13] Su SY, Wang XY, Zhou DD. Research progress on the influence of metal ions on the electricity production performance of microbial fuel cell. Sichuan Environment, 2018, 37(4):169-174. (in Chinese) 苏圣媛, 王小雨, 周丹丹. 金属离子对微生物燃料电池产电性能影响的研究进展. 四川环境, 2018, 37(4):169-174.
    [14] Gai RZ, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process School of Resources and Environmental Engineering East China University of Science and Technology Shanghai China. Behavior of copper, nickel, cadmium and mercury ions in anode chamber of microbial fuel cells. International Journal of Electrochemical Science, 2018:3050-3062.
    [15] Chang DM, Zhang HQ, Lu ZH, Huang GT, Cai LK, Zhang LH. Behavior of metal ions in microbial fuel cells. Progress in Chemistry, 2014, 26(7):1244-1254. (in Chinese) 常定明, 张海芹, 卢智昊, 黄光团, 蔡兰坤, 张乐华. 金属离子在微生物燃料电池中的行为. 化学进展, 2014, 26(7):1244-1254.
    [16] Zhang WX, Zhao QL, Zhang YS, Jiang JQ. Enhancement of electricity generation performance of microbial fuel cell anode microorganism by magnesium ion. Journal of Harbin Institute of Technology, 2016, 48(8):42-47. (in Chinese) 张伟贤, 赵庆良, 张云澍, 姜珺秋. 镁离子对微生物燃料电池阳极微生物产电性能的促进. 哈尔滨工业大学学报, 2016, 48(8):42-47.
    [17] Zhang JX, Zhang YB, Chang JH, Quan X, Li Q. Biological sulfate reduction in the acidogenic phase of anaerobic digestion under dissimilatory Fe (III)-reducing conditions. Water Research, 2013, 47(6):2033-2040.
    [18] Arbuckle WB, Grigg AA. Determination of biomass MLVSS in PACT sludges. Journal of Water Pollution Control Federation, 1982, 20(54):1553-1557.
    [19] 任南琪, 等. 污染控制微生物学. 哈尔滨:哈尔滨工业大学出版社, 2002.
    [20] 徐富. 厌氧颗粒污泥规模化培养及其形成机制研究. 江南大学博士学位论文, 2013.
    [21] 苏欣颖. MBR膜污染解析及MFC-MBR耦合系统膜污染控制研究. 哈尔滨工业大学博士学位论文, 2013.
    [22] 王畅. 活性污泥颗粒化机理研究与数学模拟. 合肥工业大学硕士学位论文, 2012.
    [23] Teo KC, Xu HL, Tay JH. Molecular mechanism of granulation. II:proton translocating activity. Journal of Environmental Engineering, 2000, 126(5):411-418.
    [24] Tourney J, Ngwenya BT. Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism. Chemical Geology, 2009, 262(3/4):138-146.
    [25] Liu XM, Sheng GP, Luo HW, Zhang F, Yuan SJ, Xu J, Zeng RJ, Wu JG, Yu HQ. Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environmental Science & Technology, 2010, 44(11):4355-4360.
    [26] Shao LM, Wang GZ, Xu HC, Yu GH, He PJ. Effects of ultrasonic pretreatment on sludge dewaterability and extracellular polymeric substances distribution in mesophilic anaerobic digestion. Journal of Environmental Sciences, 2010, 22(3):474-480.
    [27] Liu H, Fang HHP. Extraction of extracellular polymeric substances (EPS) of sludges. Journal of Biotechnology, 2002, 95(3):249-256.
    [28] Sponza DT. Investigation of extracellular polymer substances (EPS) and physicochemical properties of different activated sludge flocs under steady-state conditions. Enzyme and Microbial Technology, 2003, 32(3/4):375-385.
    [29] 王洁. 高通量测序等分子生物学技术研究填埋场生物反应器脱氮微生物群落变化. 华东师范大学硕士学位论文, 2014.
    [30] He GQ, Du GC, Liu LM, Liu H, Huo GH, Chen J. Cutinase production from short-chain organic acids by Thermobifida fusca. Chinese Journal of Biotechnology, 2008, 24(5):821-828. (in Chinese) 何刚强, 堵国成, 刘立明, 刘和, 霍光华, 陈坚. 嗜热子囊菌利用短链有机酸生产角质酶. 生物工程学报, 2008, 24(5):821-828.
    [31] Zhang LM, He JZ. A novel archaeal phylum:Thaumarchaeota-A review. Acta Microbiologica Sinica, 2012, 52(4):411-421. (in Chinese) 张丽梅, 贺纪正. 一个新的古菌类群——奇古菌门(Thaumarchaeota). 微生物学报, 2012, 52(4):411-421.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨爽,宋迪慧,安路阳,张立涛,柳丽芬,屈泽鹏,徐歆未,李红欣. 厌氧E-MBR反应器在焦化废水处理中的微生物特性研究[J]. 微生物学报, 2021, 61(8): 2427-2441

复制
分享
文章指标
  • 点击次数:314
  • 下载次数: 1356
  • HTML阅读次数: 1028
  • 引用次数: 0
历史
  • 收稿日期:2020-09-14
  • 最后修改日期:2020-11-20
  • 在线发布日期: 2021-08-04
文章二维码