NADPH缺陷型Corynebacterium glutamicum重组菌株的构建及其性能分析
作者:
基金项目:

国家自然科学基金(31601459);国家双一流轻工业技术与工程一级学科计划(LITE2018-08)


Construction and performance analysis of NADPH-auxotrophic Corynebacterium glutamicum recombinant
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 改造谷氨酸棒杆菌(Corynebacterium glutamicum)中NADPH合成途径,阻断胞内NADPH的合成,获得1株NADPH营养缺陷型菌株。[方法] 通过失活L-赖氨酸高产菌C.glutamicum Lys-χ中葡萄糖-6-磷酸脱氢酶(Zwf)和苹果酸酶(MalE)并将NADP+依赖型异柠檬酸脱氢酶(NADP+-IcdCg)替换成变形链球菌(Streptococcus mutans)中的NAD+-IcdSm,阻断胞内NADPH的合成。随后结合辅因子工程,引入大肠杆菌(Escherichia coli)中膜结合吡啶核苷酸转氢酶(PntAB)并通过不同强度启动子控制PntAB的表达水平。最后,分析不同重组菌中胞内氧化还原水平和L-赖氨酸生产强度的变化。[结果] 重组菌C.glutamicum Lys-χΔZMICg::ISm(即Lys-χ1)胞内检测不到NADPH,为1株NADPH营养缺陷型菌株。该重组菌只在以葡萄糖酸为碳源的基础培养基中生长和积累L-赖氨酸,而以葡萄糖、丙酮酸、α-酮戊二酸和草酰乙酸为碳源时无法生长。此外,表达E.coli中的PntAB可回补重组菌Lys-χ1胞内NADPH的水平,但由于不同强度启动子控制PntAB表达水平不同,重组菌胞内NADPH水平也不同,并影响L-赖氨酸的生产强度。[结论] 重组菌Lys-χ1可作为有效的底盘细胞,用于考察不同的NADPH再生策略,获得不同胞内NADPH水平的重组菌株,为进一步阐明NADPH调控微生物细胞生理代谢功能的机制提供研究基础。

    Abstract:

    [Objective] The biosynthetic pathway of NADPH in Corynebacterium glutamicum was modified to block NADPH production, thus constructing an NADPH-auxotrophic C. glutamicum recombinant.[Methods] To block NADPH production in cell, we firstly inactivated the glucose-6-phosphate dehydrogenase (Zwf) and malic enzyme (MalE) in an L-lysine high-producing strain C. glutamicum Lys-χ, and replaced the native NADP+-dependent isocitrate dehydrogenase (NADP+-IcdCg) with NAD+-IcdSm from Streptococcus mutans. Then, we introduced the proton-pumping nicotinamide nucleotide transhydrogenase (PntAB) from Escherichia coli with different expression level controlled by different strength promoters into NADPH-auxotrophic C. glutamicum recombinant. Lastly, we analyzed the changes of intracellular redox level and production intensity of L-lysine in the recombinant strains with different PntAB expression levels. [Results] There was no detectable NADPH in the recombinant strain C. glutamicum Lys-χ ΔZMICg::ISm (i.e., Lys-χ1), indicating that strain Lys-χ1 was an NADPH-auxotrophic C. glutamicum. Strain Lys-χ1 grew well and accumulated L-lysine in the basic medium with gluconolactone as carbone source, whereas it could not grow with glucose, pyruvate, α-ketoglutaric acid and oxalacetic acid as carbon source. In addition, overexpression of PntAB in strain Lys-χ1 replenished the intracellular NADPH level, but the NADPH level in different recombinant strains was different because there was the different expression level of PntAB under the different intensity of promoters. And these affected the cell growth and L-lysine production.[Conclusion] The strain Lys-χ1 could be used as a chassis cell for the capacity of strategies to regenerate NADPH in vivo, thus obtaining recombinant strains with different intracellular NADPH levels. Therefoere, this study provided a basis for investigating the regulatory mechanism of NADPH on physiology and metabolism of microbial cells.

    参考文献
    [1] Xu JZ, Yang HK, Zhang WG. NADPH metabolism:a survey of its theoretical characteristics and manipulation strategies in amino acid biosynthesis. Critical Reviews in Biotechnology, 2018, 38(7):1061-1076.
    [2] Qi HS, Li SS, Zhao SM, Huang D, Xia ML, Wen JP. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis. PLoS ONE, 2014, 9(4):e93815.
    [3] Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MMY, Arnold FH. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metabolic Engineering, 2011, 13(3):345-352.
    [4] Bartek T, Blombach B, Zönnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M. Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum. Biotechnology Progress, 2010, 26(2):361-371.
    [5] Xu JZ, Han M, Zhang JL, Guo YF, Zhang WG. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Amino Acids, 2014, 46(9):2165-2175.
    [6] Xu JZ, Ruan HZ, Yu HB, Liu LM, Zhang WG. Metabolic engineering of carbohydrate metabolism systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production from mixed sugar. Microbial Cell Factories, 2020, 19(1):39.
    [7] Xu Q, Xu X, Huang H, Li S. Efficient synthesis of (R)-2-chloro-1-phenylethol using a yeast carbonyl reductase with broad substrate spectrum and 2-propanol as cosubstrate. Biochemical Engineering Journal, 2015, 103:277-285.
    [8] Chen Y, Liu QG, Chen XC, Wu JL, Guo T, Zhu CJ, Ying HJ. Redirecting metabolic flux in Saccharomyces cerevisiae through regulation of cofactors in UMP production. Journal of Industrial Microbiology & Biotechnology, 2015, 42(4):577-583.
    [9] Soga N, Kinosita K Jr, Yoshida M Jr, Suzuki T Jr. Kinetic equivalence of transmembrane pH and electrical potential differences in ATP synthesis. Journal of Biological Chemistry, 2012, 287(12):9633-9639.
    [10] Kang SW, Lee S, Lee EK. ROS and energy metabolism in cancer cells:alliance for fast growth. Archives of Pharmacal Research, 2015, 38(3):338-345.
    [11] Li N, Zhang YY, Ye Q, Zhang YZ, Chen Y, Chen XC, Wu JL, Bai JX, Xie JJ, Ying HJ. Effect of ribose, xylose, aspartic acid, glutamine and nicotinic acid on ethyl (S)-4-chloro-3-hydroxybutanoate synthesis by recombinant Escherichia coli. Bioresource Technology, 2012, 118:572-575.
    [12] Singh R, Mailloux RJ, Puiseux-Dao S, Appanna VD. Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. Journal of Bacteriology, 2007, 189(18):6665-6675.
    [13] Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum-over expression and modification of G6P dehydrogenase. Journal of Biotechnology, 2007, 132(2):99-109.
    [14] Martínez I, Zhu JF, Lin H, Bennett GN, San KY. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metabolic Engineering, 2008, 10(6):352-359.
    [15] Kind S, Becker J, Wittmann C. Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway-metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum. Metabolic Engineering, 2013, 15:184-195.
    [16] Chou HH, Marx CJ, Sauer U. Transhydrogenase promotes the robustness and evolvability of E. coli deficient in NADPH production. PLoS Genetics, 2015, 11(2):e1005007.
    [17] Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ. Corynebacterium glutamicum tailored for efficient isobutanol production. Applied and Environmental Microbiology, 2011, 77(10):3300-3310.
    [18] Yang HK, Xu JZ, Zhang WG. Blocking NADPH biosynthesis affected growth and metabolites formation of Corynebacterium glutamicum. Food and Fermenta??潯牮爠??????獲?????慩爾??瘲攰渱?????挨攱瘰攩携漱?刹漮挠栨慩??????楥??温?癨楉瘆漬??槺??猠攠氟旽挮琠椻澭溅?晐潎牁?晐潈爈洐懹琷攨?擒敆棌礟摿狊澧杩攈渐憄獱旍献?矟槁琎棑?棥椚本栠′攰昱昹椬挠椴攵渨挱礰?愺渱搭?献瀼敢捲椾晛椱挹楝琠禐?璆漮眠懄牲擭?仌??僻?玄疄烺????猭甬瀨????椋???匝??慶琮愠江祗猧楦獚??楍???㈠?日????ぢ????????????㈠?? Qian FH, Yang JJ, Liu YM, Dong F, Xu CM, Sun BB, Chen B, Xu XS, Li Y, Wang RX, Yang S. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nature Communications, 2017, 8:15179.
    [21] 叶菁. 木糖异构酶基因xylA在谷氨酸棒杆菌中的克隆与表达研究. 华中科技大学博士学位论文, 2013.
    [22] Pátek M, Nešvera J. Promoters and plasmid vectors of Corynebacterium glutamicum.//Yukawa H, Inui M (eds). Corynebacterium glutamicum:Biology and Biotechnology. Berlin, Heidelberg:Springer-Verlag, 2013:51-88.
    [23] Vašicová P, Pátek M, Nešvera J, Sahm H, Eikmanns B. Analysis of the Corynebacterium glutamicum dapA promoter. Journal of Bacteriology, 1999, 181(19):6188-6191.
    [24] Yim SS, An SJ, Kang M, Lee J, Jeong KJ. Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnology and Bioengineering, 2013, 110(11):2959-2969.
    [25] Wang LP, Yu HB, Xu JZ, Ruan HZ, Zhang WG. Deciphering the crucial roles of AraC-type transcriptional regulator Cgl2680 on NADPH metabolism and L-lysine production in Corynebacterium glutamicum. World Journal of Microbiology and Biotechnology, 2020, 36(6):1-15.
    [26] Lindner SN, Ramirez LC, Krüsemann JL, Yishai O, Belkhelfa S, He H, Bouzon M, Döring V, Bar-Even A. NADPH-auxotrophic E. coli:a sensor strain for testing in vivo regeneration of NADPH. ACS Synthetic Biology, 2018, 7(12):2742-2749.
    [27] Xu JZ, Ruan HZ, Chen XL, Zhang F, Zhang WG. Equilibrium of the intracellular redox state for improving cell growth and L-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping. Microbial Cell Factories, 2019, 18(1):65.
    [28] Calzadiaz-Ramirez L, Calvó-Tusell C, Stoffel GMM, Lindner SN, Osuna S, Erb TJ, Garcia
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

阮浩哲,刘立明,张伟国,徐建中. NADPH缺陷型Corynebacterium glutamicum重组菌株的构建及其性能分析[J]. 微生物学报, 2021, 61(8): 2442-2456

复制
分享
文章指标
  • 点击次数:478
  • 下载次数: 1740
  • HTML阅读次数: 1199
  • 引用次数: 0
历史
  • 收稿日期:2020-09-18
  • 最后修改日期:2020-11-07
  • 在线发布日期: 2021-08-04
文章二维码