尿路致病性大肠杆菌中Ⅰ型限制-修饰系统C5423-5425的鉴定
作者:
基金项目:

国家自然科学基金(31902242);国家重点研发计划(2018YFD0500500)


Characterization of a type I restriction-modification system C5423-5425 in uropathogenic Escherichia coli
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 多方面鉴定尿路致病性大肠杆菌中的Ⅰ型限制-修饰(restriction-modification,RM)系统C5423-5425,并揭示其功能与生理意义。[方法] 利用Lambda Red重组系统构建CFT073 DNA甲基化转移酶基因缺失株Δc5424;利用单分子实时测序分析以获得C5424甲基化修饰的位点与基序;利用转化效率试验说明RM系统抵御外源DNA的转化;利用转录组测序和荧光定量RT-PCR鉴定C5424的调控基因;利用软琼脂平板运动试验等方法研究细菌生理功能的变化。[结果] 用生物信息学方法鉴定了一个Ⅰ型RM系统;获得了c5424的突变株;鉴定了C5424修饰的靶序列GmAGNNNNNNNGTCA/TGmAC NNNNNNNCTC,并揭示了靶序列在基因组中的分布;C5424系统可以抵御外源DNA的进入;c5424的缺失显著影响17个基因的表达,包括运动相关基因motB和抗活性氯基因rclR等;c5424的缺失显著影响CFT073的运动能力和抗次氯酸的能力。[结论] 本文从多方面鉴定了尿路致病性大肠杆菌CFT073中的I型RM系统C5423-5425,这个系统对细菌具有重要的生理意义。本文对研究细菌的表观遗传学具有参考价值。

    Abstract:

    [Objective] To characterize a type I restriction-modification (RM) system C5423-5425 in uropathogenic Escherichia coli CFT073 and to determine its function and physiological significance. [Methods] Lambda Red recombination system was used to construct methyltransferase gene deletion mutant Δc5424 in CFT073. The modification sites and recognition motif of C5424 methyltransferase were obtained by single molecule real-time sequencing analysis. A transformation efficiency assay was used to test that the RM system C5423-5425 can block transformation of exogenous DNA. Genes regulated by C5424 were identified by transcriptome sequencing and real-time quantitative PCR. The physiological function of c5424 was studied by soft agar plate motility assay. [Results] A type I RM system was identified by bioinformatics methods. A c5424 deletion mutant was constructed. We found that the C5424 recognition motif was GmAGNNNNNNNGTCA/TGmACNNNNNNNCTC, and its distribution in the genome was presented. C5424 contributed to reducing transformation of foreign DNA. Deletion of c5424 significantly affected the expression of 17 genes, including motB and rclR. Lacking c5424 significantly affected bacterial motility and the resistance to hypochlorous acid in CFT073. [Conclusion] In this paper, the type I RM system C5423-5425 was characterized in detail, and it is physiologically important for uropathogenic E. coli CFT073. Thus, our data provided valuable information for bacterial epigenetics studies.

    参考文献
    [1] Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiology and Molecular Biology Reviews, 2013, 77(1):53-72.
    [2] Tong T, Wang LR. Epigenetic regulation role of DNA methylation in bacteria. Acta Microbiologica Sinica, 2017, 57(11):1688-1697. (in Chinese) 童童, 王连荣. 甲基化修饰在细菌表观调控中的功能. 微生物学报, 2017, 57(11):1688-1697.
    [3] Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal RM, Degtyarev SK, Dryden DTF, Dybvig K, Firman K, Gromova ES, Gumport RI, Halford SE, Hattman S, Heitman J, Hornby DP, Janulaitis A, Jeltsch A, Josephsen J, Kiss A, Klaenhammer TR, Kobayashi I, Kong H, Krüger DH, Lacks S, Marinus MG, Miyahara M, Morgan RD, Murray NE, Nagaraja V, Piekarowics A, Pingoud A, Raleigh E, Rao DN, Reich N, Repin VE, Selker EU, Shaw PC, Stein DC, Stoddard BL, Szybalski W, Trautner TA, Etten JL, Vitor JMB, Wilson GG, Xu SY. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases, and their genes restriction endonucleases. Nucleic Acids Research, 2003, 31(7):1805-1812.
    [4] Dryden DTF, Murray NE, Rao DN. Nucleoside triphosphate-dependent restriction enzymes. Nucleic Acids Research, 2001, 29(18):3728-3741.
    [5] Murray NE. Type I restriction systems:sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiology and Molecular Biology Reviews, 2000, 64(2):412-434.
    [6] de Ste Croix M, Vacca I, Kwun MJ, Ralph JD, Bentley SD, Haigh R, Croucher NJ, Oggioni MR. Phase-variable methylation and epigenetic regulation by type I restriction-modification systems. FEMS Microbiology Reviews, 2017, 41(Supp_1):S3-S15.
    [7] Doberenz S, Eckweiler D, Reichert O, Jensen V, Bunk B, Spröer C, Kordes A, Frangipani E, Luong K, Korlach J, Heeb S, Overmann J, Kaever V, Häussler S. Identification of a Pseudomonas aeruginosa PAO1 DNA methyltransferase, its targets, and physiological roles. mBio, 2017, 8(1):e02312-16.
    [8] Nye TM, Jacob KM, Holley EK, Nevarez JM, Dawid S, Simmons LA, Watson ME. DNA methylation from a Type I restriction modification system influences gene expression and virulence in Streptococcus pyogenes. PLoS Pathogens, 2019, 15(6):e1007841.
    [9] Shea AE, Marzoa J, Himpsl SD, Smith SN, Zhao LL, Tran L, Mobley HLT. Escherichia coli CFT073 fitness factors during urinary tract infection:identification using an ordered transposon library. Applied and Environmental Microbiology, 2020, 86(13):e00691-20.
    [10] Zalewska-Piątek BM, Piątek RJ. Alternative treatment approaches of urinary tract infections caused by uropathogenic Escherichia coli strains. Acta Biochimica Polonica, 2019, 66(2):129-138.
    [11] Cotter PA, DiRita VJ. Bacterial virulence gene regulation:an evolutionary perspective. Annual Review of Microbiology, 2000, 54:519-565.
    [12] Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12):6640-6645.
    [13] Spurbeck RR, Tarrien RJ, Mobley HLT. Enzymatically active and inactive phosphodiesterases and diguanylate cyclases are involved in regulation of motility or sessility in Escherichia coli CFT073. mBio, 2012, 3(5):e00307-12.
    [14] Winter J, Ilbert M, Graf PCF, Özcelik D, Jakob U. Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell, 2008, 135(4):691-701.
    [15] Parker BW, Schwessinger EA, Jakob U, Gray MJ. The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli. Journal of Biological Chemistry, 2013, 288(45):32574-32584.
    [16] Gebendorfer KM, Drazic A, Le Y, Gundlach J, Bepperling A, Kastenmüller A, Ganzinger KA, Braun N, Franzmann TM, Winter J. Identification of a hypochlorite-specific transcription factor from Escherichia coli. The Journal of Biological Chemistry, 2012, 287(9):6892-6903.
    [17] Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nature Reviews Microbiology, 2004, 2(2):123-140.
    [18] Lane MC, Alteri CJ, Smith SN, Mobley HLT. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(42):16669-16674.
    [19] Albrett AM, Ashby LV, Dickerhof N, Kettle AJ, Winterbourn CC. Heterogeneity of hypochlorous acid production in individual neutrophil phagosomes revealed by a rhodamine-based probe. The Journal of Biological Chemistry, 2018, 293(40):15715-15724.
    [20] Hu JL, Lei P, Mohsin A, Liu XY, Huang MZ, Li L, Hu JH, Hang HF, Zhuang YP, Guo MJ. Mixomics analysis of Bacillus subtilis:effect of oxygen availability on riboflavin production. Microbial Cell Factories, 2017, 16:150. https://doi.org/10.1186/s12934-017-0764-z
    [21] Fekrirad Z, Kashef N, Arefian E. Photodynamic inactivation diminishes quorum sensing-mediated virulence factor production and biofilm formation of Serratia marcescens. World Journal of Microbiology and Biotechnology, 2019, 35:191. https://doi.org/10.1007/s11274-019-2768-9
    [22] Oliver MB, Swords WE. Comparative analysis of Streptococcus pneumoniae type I restriction-modification loci:variation in hsdS gene target recognition domains. Pathogens, 2020, 9(9):712.
    [23] Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG. Type I restriction enzymes and their relatives. Nucleic Acids Research, 2014, 42(1):20-44.
    [24] Alteri CJ, Mobley HLT. Metabolism and fitness of urinary tract pathogens.//Conway T, Cohen PS. Metabolism and Bacterial Pathogenesis. American Society of Microbiology, 2015:215-230.
    [25] Sutton TDS, Hill C. Gut bacteriophage:current understanding and challenges. Frontiers in Endocrinology, 2019, 10:784.
    [26] Beaulaurier J, Schadt EE, Fang G. Deciphering bacterial epigenomes using modern sequencing technologies. Nature Reviews Genetics, 2019, 20(3):157-172.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李火明,夏颖,李干武,蔡文通. 尿路致病性大肠杆菌中Ⅰ型限制-修饰系统C5423-5425的鉴定[J]. 微生物学报, 2021, 61(8): 2457-2468

复制
分享
文章指标
  • 点击次数:375
  • 下载次数: 1045
  • HTML阅读次数: 2399
  • 引用次数: 0
历史
  • 收稿日期:2020-09-20
  • 最后修改日期:2021-01-14
  • 在线发布日期: 2021-08-04
文章二维码