NirA1基因对球孢白僵菌生长、抗逆及毒力的影响
作者:
基金项目:

重庆市自然科学基金(cstc2019jcyj-msxmX0388);国家级大学生创新创业训练计划(202010635054)


Effects of NirA1 gene on growth, stress resistance and virulence of Beauveria bassiana
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 探究参与硝酸盐同化的一个特异转录因子NirA1对球孢白僵菌(Beauveria bassiana)生长、抗逆及毒力的影响。[方法] 利用RT-PCR检测球孢白僵菌NirA1基因在不同培养基中的表达特征。通过构建敲除突变株ΔNirA1、超量表达OENirA1及回复互补菌株ComNirA1,解析NirA1在球孢白僵菌生长发育、逆境胁迫反应和致病昆虫中的功能。[结果] NirA1基因在营养较贫瘠的CZB培养基中表达量高于丰富培养基PDB和SDB。敲除NirA1导致了菌株在人工培养基上的生长缓慢,对NaNO2和Urea的利用效率降低。RT-PCR显示,ΔNirA1中硝酸盐转运蛋白基因NrtA的表达较野生型显著下调。在CZA、PDA和1/4 SDAY培养基中,其分生孢子产量分别较野生型降低了21.6%、16.2%和25.6%。逆境胁迫分析发现,在高温(32℃),高渗(1 mol/L NaCl)和H2O2处理后,ΔNirA1菌落生长抑制率较野生型分别降低29.0%、25.2%及49.0%;但在添加SDS和刚果红(CR)的处理中,突变体菌落的生长抑制率分别较野生型升高34.1%和96.2%。因此,缺失NirA后,菌株对SDS和CR更加敏感,但对高温、H2O2和NaCl的耐受性提高。以3龄的大蜡螟为试虫的毒力测定表明,敲除NirA1基因导致菌株的毒力提高,半致死时间较野生型提前17.4%。[结论] NirA1在球孢白僵菌生长过程中参与了氮源的利用,并在球孢白僵菌的菌落生长、分生孢子生产、胁迫反应和致病宿主过程中发挥了重要作用。

    Abstract:

    [Objective] We investigated the effects of the nitrate-specific activator NirA1 on the growth and stress resistance of Beauveria bassiana. [Methods] The expression of NirA1 was detected by RT-PCR in different culture mediums. Several NirA1 strains, including gene knockout (ΔNirA1), complementary (ComNirA1), and over-expression (OENirA1), were constructed and the functions of NirA1 involved in fungal developmental differentiation, stress reactions and virulence were analyzed. [Results] Expression level of NirA1 was higher in CZB medium than that in PDB or SDB. The growth of ΔNirA1 in mediums with different nitrogen sources was significantly slower compared to wild type. The expression of nitrate transporter NrtA was down-regulated in NirA1 deletion mutant. Compared to wild type, conidial yield in CZA, PDA and 1/4 DAY mediums decreased by 21.6%, 16.2% and 25.6% respectively. The growth inhibition rate of ΔNirA1 in 32 ℃, 1 mol/L NaCl and H2O2mediums was reduced by 29.0%, 25.2% and 49.0%, but increased by 34.1% and 96.2% in SDS and Congo red mediums respectively. Bioassay of fungal strains were performed using 3rd-instar larvae of G. mellonella. Compared to wild type, deletion of NirA1 increased fungal virulence, decreasing mean lethal time (LT50) by 17.4%. [Conclusion] These results indicated NirA1 is involved in the utilization of nitrogen sources and play crucial roles in colony growth, conidiation, stress responses, and pathogenesis of B. bassiana.

    参考文献
    [1] Wang CS, Wang SB. Insect pathogenic fungi:genomics, molecular interactions, and genetic improvements. Annual Review of Entomology, 2017, 62:73-90.
    [2] Chen YX, Cen K, Lu YZ, Zhang SW, Shang YF, Wang CS. Nitrogen-starvation triggers cellular accumulation of triacylglycerol in Metarhizium robertsii. Fungal Biology, 2018, 122(6):410-419.
    [3] Marzluf GA. Genetic regulation of nitrogen metabolism in the fungi. Microbiology and Molecular Biology Reviews, 1997, 61(1):17-32.
    [4] Burger G, Tilburn J, Scazzocchio C. Molecular cloning and functional characterization of the pathway-specific regulatory gene nirA, which controls nitrate assimilation in Aspergillus nidulans. Molecular and Cellular Biology, 1991, 11(2):795-802.
    [5] Burger G, Strauss J, Scazzocchio C, Lang BF. nirA, the pathway-specific regulatory gene of nitrate assimilation in Aspergillus nidulans, encodes a putative GAL4-type zinc finger protein and contains four introns in highly conserved regions. Molecular and Cellular Biology, 1991, 11(11):5746-5755.
    [6] Imbeault M, Helleboid PY, Trono D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature, 2017, 543(7646):550-554.
    [7] Punt PJ, Strauss J, Smit R, Kinghorn JR, van den Hondel CA, Scazzocchio C. The intergenic region between the divergently transcribed niiA and niaD genes of Aspergillus nidulans contains multiple NirA binding sites which act bidirectionally. Molecular And Cellular Biology, 1995, 15(10):5688-5699.
    [8] Berger H, Pachlinger R, Morozov I, Goller S, Narendja F, Caddick M, Strauss J. The GATA factor AreA regulates localization and in vivo binding site occupancy of the nitrate activator NirA. Molecular Microbiology, 2006, 59(2):433-446.
    [9] Bernreiter A, Ramon A, Fernández-Martínez J, Berger H, Araújo-Bazan L, Espeso EA, Pachlinger R, Gallmetzer A, Anderl I, Scazzocchio C, Strauss J. Nuclear export of the transcription factor NirA is a regulatory checkpoint for nitrate induction in Aspergillus nidulans. Molecular and Cellular Biology, 2007, 27(3):791-802.
    [10] Schinko T, Berger H, Lee W, Gallmetzer A, Pirker K, Pachlinger R, Buchner I, Reichenauer T, Güldener U, Strauss J. Transcriptome analysis of nitrate assimilation in Aspergillus nidulans reveals connections to nitric oxide metabolism. Molecular Microbiology, 2010, 78(3):720-738.
    [11] Hajek AE, Delalibera I. Fungal pathogens as classical biological control agents against arthropods. BioControl, 2010, 55(1):147-158.
    [12] Jackson MA, Dunlap CA, Jaronski ST. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl, 2010, 55(1):129-145.
    [13] Lane BS, Trinci APJ, Gillespie AT. Endogenous reserves and survival of blastospores of Beauveria hassiana harvested from carbon- and nitrogen-limited batch cultures. Mycological Research, 1991, 95(7):821-828.
    [14] Luo ZB, Qin YQ, Pei Y, Keyhani NO. Ablation of the creA regulator results in amino acid toxicity, temperature sensitivity, pleiotropic effects on cellular development and loss of virulence in the filamentous fungus Beauveria bassiana. Environmental Microbiology, 2014, 16(4):1122-1136.
    [15] Wanchoo A, Lewis MW, Keyhani NO. Lectin mapping reveals stage-specific display of surface carbohydrates in vitro and haemolymph-derived cells of the entomopathogenic fungus Beauveria bassiana. Microbiology, 2009, 155(9):3121-3133.
    [16] Pateman JA, Cove DJ. Regulation of nitrate reduction in Aspergillus nidulans. Nature, 1967, 215(5107):1234-1237.
    [17] Berger H, Basheer A, Böck S, Reyes-Dominguez Y, Dalik T, Altmann F, Strauss J. Dissecting individual steps of nitrogen transcription factor cooperation in the Aspergillus nidulans nitrate cluster. Molecular Microbiology, 2008, 69(6):1385-1398.
    [18] Xie XQ, Li F, Ying SH, Feng MG. Additive contributions of two manganese-cored superoxide dismutases (MnSODs) to antioxidation, UV tolerance and virulence of Beauveria bassiana. PLoS One, 2012, 7(1):e30298.
    [19] Morano KA, Grant CM, Moye-Rowley WS. The Response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics, 2012, 190(4):1157-1195.
    [20] Horowitz S, Freeman S, Zveibil A, Yarden O. A defect in nir1, a nirA-like transcription factor, confers morphological abnormalities and loss of pathogenicity in Colletotrichum acutatum. Molecular Plant Pathology, 2006, 7(5):341-354.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘宇,李永霞,童胜,王俊尧,朱生安,张乐源,范艳华. NirA1基因对球孢白僵菌生长、抗逆及毒力的影响[J]. 微生物学报, 2021, 61(8): 2469-2480

复制
分享
文章指标
  • 点击次数:365
  • 下载次数: 1267
  • HTML阅读次数: 1657
  • 引用次数: 0
历史
  • 收稿日期:2020-09-23
  • 最后修改日期:2021-01-07
  • 在线发布日期: 2021-08-04
文章二维码