基因串联策略强化枯草芽孢杆菌终止子的功能及其在基因表达中的应用
作者:
基金项目:

国家自然科学基金(21878125);国家重点研发计划(2017YFE0129600)


Gene tandem strategy strengthens the function of terminators and its application in gene expression in Bacillus subtilis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在底盘微生物中使用高性能终止子能够显著增强基因终止效率,维持新合成mRNA的稳定性,提升外源基因表达性能。而目前缺乏专一用于枯草芽孢杆菌的终止子元件,限制了复杂功能基因电路的设计。[目的] 在枯草芽孢杆菌中挖掘新的高性能终止子,并进一步重新设计,丰富适用于这一底盘的高性能人工终止子。[方法] 将枯草芽孢杆菌终止子和枯草芽孢杆菌噬菌体终止子分别构建至终止子检测质粒中,测定各终止子的终止效率(terminator efficiency,TE)。将不同强度单终止子按强弱、强强、弱弱组合构建串联终止子,测定不同组合体的终止性能。利用高性能串联终止子进行天冬氨酸氨基裂解酶(AspA)和β-葡萄糖苷酸酶(GusA)的表达功能验证,检测高性能终止子对基因表达水平的作用。[结果] 经过检测,TB5终止子终止效率最强,TE为98%。含有TB5终止子的表达体系中GFP水平比对照上调2.2倍,RFP的表达水平下调27倍。双串联组合体终止子中,TH1.5b-TB5(TE=97%)和TB5-TB5(TE=98%)串联终止子可将RFP的表达水平下调30倍。而三串联终止子中,TB2-TB5-TB5组合体与相应的双组合体相比,GFP的表达水平虽无进一步提升,但RFP的表达仅有参照的1/300。最后,通过AspA和GusA的重组表达确证了串联终止子TH1.5b-TB5和TB10-TB5对基因表达水平的提升作用。[结论] 高终止效率的终止子可以显著提升上游基因的表达水平,通过一定规律的基因串联能够进一步提升终止子的工作效率。这种人工再设计的终止子可方便、快捷地构建至细菌基因表达系统,实现基因表达的高效调控。

    Abstract:

    Using high-property terminators enable significant enhancement of transcription termination, mRNA stability, heterologous gene expression in classic microorganisms. However, design of complex gene circuits was limited by the lack of terminators specifically adapted to Bacillus subtilis. [Objective] Exploiting new high-performance terminators from Bacillus subtilis and further redesigning to enrich the artificial terminators suitable for this chassis. [Methods] The terminators from Bacillus subtilis and Bacillus subtilis phage were respectively constructed into the terminator measurement plasmid to determine the termination efficiency (TE). Multiple tandem terminators were constructed with combinatorial patterns of strong-weak, strong-strong, and weak-weak and subsequently TEs of those tandem terminators were individually determined. The tandem terminators with high TE were harnessed to verify the function of heterologous expression of L-aspartate amino lyase (AspA) and β-glucuronidase (GusA) in B. subtilis. [Results] The TE of terminator TB5 is 98%, which is strongest among the natural terminators in B. subtilis. Meanwhile, expression level of GFP harboring TB5 was up-regulated by 2.2 folds, and the expression level of RFP was down-regulated by 27 folds. For the dual-tandem terminators, the expression levels of RFP regulated by TH1.5b-TB5 (TE=97%) and TB5-TB5 (TE=98%) tandem terminators were decreased by 30 folds. For the triple-tandem terminators, TB2-TB5-TB5 combination no longer increase the expression level of GFP compared with the corresponding dual combination. Nevertheless, the expression of RFP is only 1/300 of the control. Finally, heterologous expression of AspA and GusA confirmed that two tandem terminators, TH1.5b-TB5 and TB10-TB5, significantly improved the gene expression in B. subtilis. [Conclusion] Strong synthetic terminators are able to reinforce the heterologous gene expression in surrogate host. Importantly, the efficiency of termination is further improved by rational combination of natural terminators in tandem manner. These artificially redesigned terminators could be conveniently and portably constructed into bacterial gene circuits to augment and stabilize gene expression.

    参考文献
    [1] Niu TF, Liu YF, Li JH, Koffas M, Du GC, Alper HS, Liu L. Engineering a glucosamine-6-phosphate responsive glmS ribozyme switch enables dynamic control of metabolic flux in Bacillus subtilis for overproduction of N-acetylglucosamine. ACS Synthetic Biology, 2018, 7(10):2423-2435.
    [2] Jin P, Kang Z, Yuan PH, Du GC, Chen J. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metabolic Engineering, 2016, 35:21-30.
    [3] Feng J, Gu YY, Quan YF, Cao MF, Gao WX, Zhang W, Wang SF, Yang C, Song CJ. Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering. Metabolic Engineering, 2015, 32:106-115.
    [4] Song YF, Nikoloff JM, Fu G, Chen JQ, Li QG, Xie NZ, Zheng P, Sun JB, Zhang DW. Promoter screening from Bacillus subtilis in various conditions hunting for synthetic biology and industrial applications. PLoS ONE, 2016, 11(7):e0158447.
    [5] Ding WT, Cheng J, Guo D, Mao L, Li JW, Lu LN, Zhang YX, Yang JK, Jiang HF. Engineering the 5' UTR-mediated regulation of protein abundance in yeast using nucleotide sequence activity relationships. ACS Synthetic Biology, 2018, 7(12):2709-2714.
    [6] Babina AM, Lea NE, Meyer MM. In vivo behavior of the tandem Glycine riboswitch in Bacillus subtilis. mBio, 2017, 8(5):e01602-17.
    [7] Lee Y, Kim SJ, Moon TS. Multilevel regulation of bacterial gene expression with the combined STAR and antisense RNA system. ACS Synthetic Biology, 2018, 7(3):853-865.
    [8] Santangelo TJ, Artsimovitch I. Termination and antitermination:RNA polymerase runs a stop sign. Nature Reviews Microbiology, 2011, 9(5):319-329.
    [9] Litcofsky KD, Afeyan RB, Krom RJ, Khalil AS, Collins JJ. Iterative plug-and-play methodology for constructing and modifying synthetic gene networks. Nature Methods, 2012, 9(11):1077-1080.
    [10] Cheng JT, Guan CR, Cui WJ, Zhou L, Liu ZM, Li WJ, Zhou ZM. Enhancement of a high efficient autoinducible expression system in Bacillus subtilis by promoter engineering. Protein Expression and Purification, 2016, 127:81-87.
    [11] Han LC, Cui WJ, Lin Q, Chen QQ, Suo FY, Ma K, Wang Y, Hao WL, Cheng ZY, Zhou ZM. Efficient overproduction of active nitrile hydratase by coupling expression induction and enzyme maturation via programming a controllable cobalt-responsive gene circuit. Frontiers in Bioengineering and Biotechnology, 2020, 8:193.
    [12] Guan CR, Cui WJ, Cheng JT, Zhou L, Liu ZM, Zhou ZM. Development of an efficient autoinducible expression system by promoter engineering in Bacillus subtilis. Microbial Cell Factories, 2016, 15:66.
    [13] Cui WJ, Han LC, Cheng JT, Liu ZM, Zhou L, Guo JL, Zhou ZM. Engineering an inducible gene expression system for Bacillus subtilis from a strong constitutive promoter and a theophylline-activated synthetic riboswitch. Microbial Cell Factories, 2016, 15(1):1-13.
    [14] Li MJ, Chen HL, Liu CQ, Guo J, Xu X, Zhang HB, Nian R, Xian M. Improvement of isoprene production in Escherichia coli by rational optimization of RBSs and key enzymes screening. Microbial Cell Factories, 2019, 18(1):4.
    [15] Guiziou S, Sauveplane V, Chang HJ, Clerté C, Declerck N, Jules M, Bonnet J. A part toolbox to tune genetic expression in Bacillus subtilis. Nucleic Acids Research, 2016, 44(15):7495-7508.
    [16] Ray-Soni A, Bellecourt MJ, Landick R. Mechanisms of bacterial transcription termination:all good things must end. Annual Review of Biochemistry, 2016, 85:319-347.
    [17] You LL, Shi J, Shen LQ, Li LT, Fang CL, Yu CZ, Cheng WB, Feng Y, Zhang Y. Structural basis for transcription antitermination at bacterial intrinsic Terminator. Nature Communications, 2019, 10:3048.
    [18] Chen YJ, Liu P, Nielsen AAK, Brophy JAN, Clancy K, Peterson T, Voigt CA. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nature Methods, 2013, 10(7):659-664.
    [19] Du LP, Gao R, Forster AC. Engineering multigene expression in vitro and in vivo with small terminators for T7 RNA polymerase. Biotechnology and Bioengineering, 2009, 104(6):1189-1196.
    [20] MacPherson M, Saka Y. Short synthetic terminators for assembly of transcription units in vitro and stable chromosomal integration in yeast S. cerevisiae. ACS Synthetic Biology, 2017, 6(1):130-138.
    [21] Anagnostopoulos C, Spizizen J. Requirements for transformation in Bacillus subtilis. Journal of Bacteriology, 1961, 81(5):741-746.
    [22] Li R, Zhang Q, Li JB, Shi HL. Effects of cooperation between translating ribosome and RNA polymerase on termination efficiency of the Rho-independent Terminator. Nucleic Acids Research, 2016, 44(6):2554-2563.
    [23] de Hoon MJL, Makita Y, Nakai KT, Miyano S. Prediction of transcriptional terminators in Bacillus subtilis and related species. PLoS Computational Biology, 2005, 1(3):e25.
    [24] Stewart CR, Casjens SR, Cresawn SG, Houtz JM, Smith AL, Ford ME, Peebles CL, Hatfull GF, Hendrix RW, Huang WM, Pedulla ML. The genome of Bacillus subtilis bacteriophage SPO1. Journal of Molecular Biology, 2009, 388(1):48-70.
    [25] Han LC, Chen QQ, Lin Q, Cheng JT, Zhou L, Liu ZM, Guo JL, Zhang LP, Cui WJ, Zhou ZM. Realization of robust and precise regulation of gene expression by multiple Sigma recognizable artificial promoters. Frontiers in Bioengineering and Biotechnology, 2020, 8:92.
    [26] Wang ZX, Wei LN, Sheng Y, Zhang GL. Yeast synthetic terminators:fine regulation of strength through linker sequences. ChemBioChem, 2019, 20(18):2383-2389.
    [27] Mairhofer J, Wittwer A, Cserjan-Puschmann M, Striedner G. Preventing T7 RNA polymerase read-through transcription-A synthetic termination signal capable of improving bioprocess stability. ACS Synthetic Biology, 2015, 4(3):265-273.
    [28] Curran KA, Morse NJ, Markham KA, Wagman AM, Gupta A, Alper HS. Short synthetic terminators for improved heterologous gene expression in yeast. ACS Synthetic Biology, 2015, 4(7):824-832.
    [29] Curran KA, Karim AS, Gupta A, Alper HS. Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications. Metabolic Engineering, 2013, 19:88-97.
    [30] Turnbough CL Jr. Regulation of bacterial gene expression by transcription attenuation. Microbiology and Molecular Biology Reviews, 2019, 83(3):e00019-19.
    [31] Cambray G, Guimaraes JC, Mutalik VK, Lam C, Mai QA, Thimmaiah T, Carothers JM, Arkin AP, Endy D. Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Research, 2013, 41(9):5139-5148.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林巧,周哲敏,崔文璟. 基因串联策略强化枯草芽孢杆菌终止子的功能及其在基因表达中的应用[J]. 微生物学报, 2021, 61(8): 2517-2529

复制
分享
文章指标
  • 点击次数:678
  • 下载次数: 1389
  • HTML阅读次数: 1502
  • 引用次数: 0
历史
  • 收稿日期:2020-10-23
  • 最后修改日期:2021-01-07
  • 在线发布日期: 2021-08-04
文章二维码